Fluctuations and criticality in the random-field Ising model

被引:14
|
作者
Theodorakis, Panagiotis E. [1 ]
Georgiou, Ioannis [2 ,3 ]
Fytas, Nikolaos G. [4 ,5 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Chem Engn, London SW7 2AZ, England
[2] Vienna Univ Technol, Inst Theoret Phys, A-1040 Vienna, Austria
[3] Vienna Univ Technol, Ctr Computat Mat Sci, A-1040 Vienna, Austria
[4] Univ Athens, Dept Phys, GR-15784 Athens, Greece
[5] Coventry Univ, Appl Math Res Ctr, Coventry CV1 5FB, W Midlands, England
来源
PHYSICAL REVIEW E | 2013年 / 87卷 / 03期
关键词
SPACE RENORMALIZATION-GROUP; LOWER CRITICAL DIMENSION; PHASE-TRANSITIONS; CRITICAL-BEHAVIOR; RANDOM-SYSTEMS; MONTE-CARLO; MULTICRITICAL POINTS; TRICRITICAL POINTS; GROUND-STATES; UNIVERSALITY;
D O I
10.1103/PhysRevE.87.032119
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate the critical properties of the d = 3 random-field Ising model with a Gaussian field distribution at zero temperature. By implementing suitable graph-theoretical algorithms, we perform a large-scale numerical simulation of the model for a vast range of values of the disorder strength h and system sizes V = L x L x L, with L <= 156. Using the sample-to-sample fluctuations of various quantities and proper finite-size scaling techniques we estimate with high accuracy the critical disorder strength h(c) and the correlation length exponent nu. Additional simulations in the area of the estimated critical-field strength and relevant scaling analysis of the bond energy suggest bounds for the specific heat critical exponent alpha and the violation of the hyperscaling exponent theta. Finally, a data collapse analysis of the order parameter and disconnected susceptibility provides accurate estimates for the critical exponent ratios beta/nu and (gamma) over bar/nu, respectively. DOI: 10.1103/PhysRevE.87.032119
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Fluctuations in the random-field Ising model
    Yokota, T
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1998, 10 (23) : 5179 - 5186
  • [2] Random-field Ising model criticality in a glass-forming liquid
    Guiselin, Benjamin
    Berthier, Ludovic
    Tarjus, Gilles
    PHYSICAL REVIEW E, 2020, 102 (04)
  • [3] Depinning transition and thermal fluctuations in the random-field Ising model
    Roters, L
    Hucht, A
    Lübeck, S
    Nowak, U
    Usadel, KD
    PHYSICAL REVIEW E, 1999, 60 (05): : 5202 - 5207
  • [4] Far-from-equilibrium criticality in the random-field Ising model with Eshelby interactions
    Rossi, Saverio
    Biroli, Giulio
    Ozawa, Misaki
    Tarjus, Gilles
    PHYSICAL REVIEW B, 2023, 108 (22)
  • [5] Critical fluctuations of time-dependent magnetization in a random-field Ising model
    Ohta, Hiroki
    Sasa, Shin-ichi
    PHYSICAL REVIEW E, 2008, 77 (02):
  • [6] Critical behavior of the random-field Ising model
    Gofman, M
    Adler, J
    Aharony, A
    Harris, AB
    Schwartz, M
    PHYSICAL REVIEW B, 1996, 53 (10): : 6362 - 6384
  • [7] MULTICRITICAL POINTS IN AN ISING RANDOM-FIELD MODEL
    KAUFMAN, M
    KLUNZINGER, PE
    KHURANA, A
    PHYSICAL REVIEW B, 1986, 34 (07): : 4766 - 4770
  • [8] Dynamical properties of random-field Ising model
    Sinha, Suman
    Mandal, Pradipta Kumar
    PHYSICAL REVIEW E, 2013, 87 (02):
  • [9] Random-field Ising model in and out of equilibrium
    Liu, Y.
    Dahmen, K. A.
    EPL, 2009, 86 (05)
  • [10] Critical aspects of the random-field Ising model
    Nikolaos G. Fytas
    Panagiotis E. Theodorakis
    Ioannis Georgiou
    Ioannis Lelidis
    The European Physical Journal B, 2013, 86