Investigation of a Machine learning methodology for the SKA pulsar search pipeline

被引:1
|
作者
Bhat, Shashank Sanjay [1 ,2 ]
Prabu, Thiagaraj [2 ]
Stappers, Ben [3 ]
Ghalame, Atul [3 ]
Saha, Snehanshu [4 ]
Sudarshan, T. S. B. [5 ]
Hosenie, Zafiirah [3 ]
机构
[1] IBM India Private Ltd, Bangalore, India
[2] Raman Res Inst, Bangalore, India
[3] Univ Manchester, Manchester, England
[4] BITS Goa, APPCAIR, Sancoale 403726, India
[5] PES Univ, Bangalore, India
关键词
Modern Radio Telescopes; Anomaly Detection; Time Series; Mask R-CNN; Binary Pulsars;
D O I
10.1007/s12036-023-09920-4
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The SKA pulsar search pipeline will be used for real time detection of pulsars. Modern radio telescopes, such as SKA will be generating petabytes of data in their full scale of operation. Hence, experience-based and data-driven algorithms are being investigated for applications, such as candidate detection. Here, we describe our findings from testing a state of the art object detection algorithm called Mask R-CNN to detect candidate signatures in the SKA pulsar search pipeline. We have trained the Mask R-CNN model to detect candidate images. A custom semi-auto annotation tool was developed and investigated to rapidly mark the regions of interest in large datasets. We have used a simulation dataset to train and build the candidate detection algorithm. A more detailed analysis is planned. This paper presents details of this initial investigation highlighting the future prospects.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Vela pulsar: single pulses analysis with machine learning techniques
    Lousto, Carlos O.
    Missel, Ryan
    Prajapati, Harshkumar
    Fiscella, Valentina Sosa
    Armengol, Federico G. Lopez
    Gyawali, Prashnna Kumar
    Wang, Linwei
    Cahill, Nathan D.
    Combi, Luciano
    del Palacio, Santiago
    Combi, Jorge A.
    Gancio, Guillermo
    Garcia, Federico
    Gutierrez, Eduardo M.
    Hauscarriaga, Fernando
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 509 (04) : 5790 - 5808
  • [32] A Review of Research on Pulsar Candidate Recognition Based on Machine Learning
    Zhang, Cheng Jun
    Shang, Zhen Hong
    Chen, Wan Min
    Xie, Liu
    Miao, Xiang Hua
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON MECHATRONICS AND INTELLIGENT ROBOTICS (ICMIR-2019), 2020, 166 : 534 - 538
  • [33] A PRESTO-based parallel pulsar search pipeline used for FAST drift scan data
    Yu, Qiu-Yu
    Pan, Zhi-Chen
    Qian, Lei
    Wang, Shen
    Yue, You-Ling
    Huang, Meng-Lin
    Hao, Qiao-Li
    You, Shan-Ping
    Peng, Bo
    Zhu, Yan
    Zhang, Lei
    Liu, Zhi-Jie
    RESEARCH IN ASTRONOMY AND ASTROPHYSICS, 2020, 20 (06)
  • [34] Vela pulsar: single pulses analysis with machine learning techniques
    Lousto, Carlos O.
    Missel, Ryan
    Prajapati, Harshkumar
    Sosa Fiscella, Valentina
    Armengol, Federico G. Lopez
    Gyawali, Prashnna Kumar
    Wang, Linwei
    Cahill, Nathan D.
    Combi, Luciano
    del Palacio, Santiago
    Combi, Jorge A.
    Gancio, Guillermo
    Garcia, Federico
    Gutierrez, Eduardo M.
    Hauscarriaga, Fernando
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 509 (04) : 5790 - 5808
  • [35] Search Personalization Using Machine Learning
    Yoganarasimhan, Hema
    MANAGEMENT SCIENCE, 2020, 66 (03) : 1045 - 1070
  • [36] Fairness of Machine Learning in Search Engines
    Fang, Yi
    Liu, Hongfu
    Tao, Zhiqiang
    Yurochkin, Mikhail
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 5132 - 5135
  • [37] Machine learning search for variable stars
    Pashchenko, Ilya N.
    Sokolovsky, Kirill V.
    Gavras, Panagiotis
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 475 (02) : 2326 - 2343
  • [38] Cataloguing the radio-sky with unsupervised machine learning: a new approach for the SKA era
    Galvin, T. J.
    Huynh, M. T.
    Norris, R. P.
    Wang, X. R.
    Hopkins, E.
    Polsterer, K.
    Ralph, N. O.
    O'Brien, A. N.
    Heald, G. H.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 497 (03) : 2730 - 2758
  • [39] A Machine Learning Pipeline for Demand Response Capacity Scheduling
    Krishnadas, Gautham
    Kiprakis, Aristides
    ENERGIES, 2020, 13 (07)
  • [40] A Machine Learning Pipeline to Analyse Multispectral and Hyperspectral Images
    Azzolini, Damiano
    Bizzarri, Alice
    Fraccaroli, Michele
    Bertasi, Francesco
    Lamma, Evelina
    2023 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE, CSCI 2023, 2023, : 1306 - 1311