Cataloguing the radio-sky with unsupervised machine learning: a new approach for the SKA era

被引:27
|
作者
Galvin, T. J. [1 ]
Huynh, M. T. [1 ,2 ]
Norris, R. P. [3 ,4 ]
Wang, X. R. [5 ,6 ]
Hopkins, E. [7 ]
Polsterer, K. [7 ]
Ralph, N. O. [3 ]
O'Brien, A. N. [3 ,4 ,8 ]
Heald, G. H. [1 ]
机构
[1] CSIRO Astron & Space Sci, POB 1130, Bentley, WA 6102, Australia
[2] Univ Western Australia, Int Ctr Radio Astron Res ICRAR, M468,35 Stirling Highway, Crawley, WA 6009, Australia
[3] Western Sydney Univ, Penrith Campus,Locked Bag 1797, Penrith, NSW 2751, Australia
[4] CSIRO Astron & Space Sci, POB 76, Epping, NSW 1710, Australia
[5] CSIRO, Data61, POB 76, Epping, NSW 1710, Australia
[6] Western Sydney Univ, Parramatta South Campus, Penrith, NSW 2751, Australia
[7] HITS gGmbH, Astroinformat, Schloss Wolfsbrututenweg 35, D-69118 Heidelberg, Germany
[8] Univ Wisconsin, Dept Phys, Milwaukee, WI 53201 USA
基金
美国国家航空航天局;
关键词
methods: statistical; infrared: galaxies; radio continuum: galaxies; GALAXY ZOO; GALACTIC NUCLEI; TAIL GALAXIES; CLASSIFICATION; MORPHOLOGIES; II;
D O I
10.1093/mnras/staa1890
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We develop a new analysis approach towards identifying related radio components and their corresponding infrared host galaxy based on unsupervised machine learning methods. By exploiting Parallelized rotation and flipping INvariant Kohonen maps (PINK), a self-organizing map (SOM) algorithm, we are able to associate radio and infrared sources without the a priori requirement of training labels. We present an example of this method using 894 415 images from the Faint Images of the Radio-Sky at Twenty centimeters (FIRST) and Wide-field Infrared Survey Explorer (WISE) surveys centred towards positions described by the FIRST catalogue. We produce a set of catalogues that complement FIRST and describe 802 646 objects, including their radio components and their corresponding AllWISE infrared host galaxy. Using these data products, we (i) demonstrate the ability to identify objects with rare and unique radio morphologies (e.g. 'X'-shaped galaxies, hybrid FR I/FR II morphologies), (ii) can identify the potentially resolved radio components that are associated with a single infrared host, (iii) introduce a 'curliness' statistic to search for bent and disturbed radio morphologies, and (iv) extract a set of 17 giant radio galaxies between 700 and 1100 kpc. As we require no training labels, our method can be applied to any radio-continuum survey, provided a sufficiently representative SOM can be trained.
引用
收藏
页码:2730 / 2758
页数:29
相关论文
共 50 条
  • [1] Exploring the radio sky in a new era
    ShuHua Ye
    [J]. Science China Physics, Mechanics & Astronomy, 2020, 63
  • [2] Exploring the radio sky in a new era
    Ye, ShuHua
    [J]. SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2020, 63 (12)
  • [3] Exploring the radio sky in a new era
    ShuHua Ye
    [J]. Science China(Physics,Mechanics & Astronomy), 2020, (12) : 33 - 33
  • [4] RaFIDe: A Machine Learning based RFI free observation planner for the SKA Era
    Bhat, Shashank Sanjay
    Prabu, T.
    Saha, Snehanshu
    [J]. 2020 XXXIIIRD GENERAL ASSEMBLY AND SCIENTIFIC SYMPOSIUM OF THE INTERNATIONAL UNION OF RADIO SCIENCE, 2020,
  • [5] Autism screening: an unsupervised machine learning approach
    Fadi Thabtah
    Robinson Spencer
    Neda Abdelhamid
    Firuz Kamalov
    Carl Wentzel
    Yongsheng Ye
    Thanu Dayara
    [J]. Health Information Science and Systems, 10
  • [6] Galaxy morphology - An unsupervised machine learning approach
    Schutter, A.
    Shamir, L.
    [J]. ASTRONOMY AND COMPUTING, 2015, 12 : 60 - 66
  • [7] Autism screening: an unsupervised machine learning approach
    Thabtah, Fadi
    Spencer, Robinson
    Abdelhamid, Neda
    Kamalov, Firuz
    Wentzel, Carl
    Ye, Yongsheng
    Dayara, Thanu
    [J]. HEALTH INFORMATION SCIENCE AND SYSTEMS, 2022, 10 (01)
  • [8] An Unsupervised Machine Learning Approach in Remote Sensing Data
    Mazzei, Mauro
    [J]. COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2019, PT III: 19TH INTERNATIONAL CONFERENCE, SAINT PETERSBURG, RUSSIA, JULY 1-4, 2019, PROCEEDINGS, PART III, 2019, 11621 : 435 - 447
  • [9] Discovery of peculiar radio morphologies with ASKAP using unsupervised machine learning
    Gupta, Nikhel
    Minh Huynh
    Norris, Ray P.
    Wang, X. Rosalind
    Hopkins, Andrew M.
    Andernach, Heinz
    Koribalski, Barbel S.
    Galvin, Tim J.
    [J]. PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF AUSTRALIA, 2022, 39
  • [10] Uncloaking hidden repeating fast radio bursts with unsupervised machine learning
    Chen, Bo Han
    Hashimoto, Tetsuya
    Goto, Tomotsugu
    Kim, Seong Jin
    Santos, Daryl Joe D.
    On, Alvina Y. L.
    Lu, Ting-Yi
    Hsiao, Tiger Y-Y
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 509 (01) : 1227 - 1236