A Machine Learning Pipeline to Analyse Multispectral and Hyperspectral Images

被引:0
|
作者
Azzolini, Damiano [1 ]
Bizzarri, Alice [1 ]
Fraccaroli, Michele [1 ]
Bertasi, Francesco [1 ]
Lamma, Evelina [1 ]
机构
[1] Univ Ferrara, Ferrara, Italy
关键词
Machine Learning; Multispectral Imaging; Image Analysis;
D O I
10.1109/CSCI62032.2023.00216
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Machine Learning is a branch of Artificial Intelligence with the goal of learning patterns from data. These techniques fall into two big categories: supervised and unsupervised learning. The former classify data based on a given set of examples whose classification is known (hence the name supervised), while the latter try to group the data without knowing a priori the possible classes. Neural Networks and clustering algorithms are two of the most prominent examples of the two aforementioned categories. In this paper, we describe a machine learning pipeline to analyse multispectral and hyperspectral images. Our approach first adopts neural networks to identify relevant pixels and then applies a clustering algorithm to group the pixels according to two different criteria, namely intensity and variation of intensity.
引用
收藏
页码:1306 / 1311
页数:6
相关论文
共 50 条
  • [1] A MACHINE-LEARNING APPROACH FOR GENERATING SYNTHETIC PRISMA HYPERSPECTRAL IMAGES FROM MULTISPECTRAL DATA
    Monaco, Manilo
    Licciardi, Giorgio A.
    Battagliere, Maria L.
    Guarini, Rocchina
    Cimino, Mario G. C. A.
    Candela, Laura
    IGARSS 2024-2024 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, IGARSS 2024, 2024, : 3659 - 3662
  • [2] Ice Detection on Aircraft Surface Using Machine Learning Approaches Based on Hyperspectral and Multispectral Images
    Musci, Maria Angela
    Mazzara, Luigi
    Lingua, Andrea Maria
    DRONES, 2020, 4 (03) : 1 - 26
  • [3] Spectrum Evaluation on Multispectral Images by Machine Learning Techniques
    Michalak, Marcin
    Switonski, Adam
    COMPUTER VISION AND GRAPHICS, PT II, 2010, 6375 : 126 - +
  • [4] Simulation of Multispectral and Hyperspectral EO Products for Onboard Machine Learning Application
    Longepe, Nicolas
    Petrelli, Isabella
    Kadunc, Nika Oman
    Peressutti, Devis
    Del Prete, Roberto
    Casaburi, Mauro
    Babkina, Irina
    Vercruyssen, Nathan
    Luis, Elisa Callejo
    Elorza, Alvaro Moron
    Marchese, Valentina
    Kidron, Agne Paskeviciute
    Melega, Nicola
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 17651 - 17665
  • [5] Machine Learning for Soil Moisture Prediction Using Hyperspectral and Multispectral Data
    Lobato, Michaela
    Norris, William Robert
    Nagi, Rakesh
    Soylemezoglu, Ahmet
    Nottage, Dustin
    2021 IEEE 24TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2021, : 696 - 702
  • [6] Fusion of airborne hyperspectral and multispectral images
    Zhukov, B
    Oertel, D
    Strobl, P
    Lehmann, F
    Lehner, M
    ALGORITHMS FOR MULTISPECTRAL AND HYPERSPECTRAL IMAGERY II, 1996, 2758 : 148 - 159
  • [7] BAYESIAN FUSION OF HYPERSPECTRAL AND MULTISPECTRAL IMAGES
    Wei, Qi
    Dobigeon, Nicolas
    Tourneret, Jean-Yves
    2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,
  • [8] MACHINE LEARNING TECHNIQUES FOR THE INVERSION OF PLANETARY HYPERSPECTRAL IMAGES
    Bernard-Michel, C.
    Doute, S.
    Fauver, M.
    Gardes, L.
    Girard, S.
    2009 FIRST WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING, 2009, : 550 - +
  • [9] A Machine Learning Approach for Material Detection in Hyperspectral Images
    Maree, Raphael
    Stevens, Benjamin
    Geurts, Pierre
    Guern, Yves
    Mack, Philippe
    2009 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPR WORKSHOPS 2009), VOLS 1 AND 2, 2009, : 372 - +
  • [10] Machine Learning with Color and Multispectral Images: Comparative Analysis of Approaches
    Mishra, Awakash
    Sony, Anubhav
    Jamuna, K., V
    2024 2ND WORLD CONFERENCE ON COMMUNICATION & COMPUTING, WCONF 2024, 2024,