A Machine Learning Pipeline to Analyse Multispectral and Hyperspectral Images

被引:0
|
作者
Azzolini, Damiano [1 ]
Bizzarri, Alice [1 ]
Fraccaroli, Michele [1 ]
Bertasi, Francesco [1 ]
Lamma, Evelina [1 ]
机构
[1] Univ Ferrara, Ferrara, Italy
关键词
Machine Learning; Multispectral Imaging; Image Analysis;
D O I
10.1109/CSCI62032.2023.00216
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Machine Learning is a branch of Artificial Intelligence with the goal of learning patterns from data. These techniques fall into two big categories: supervised and unsupervised learning. The former classify data based on a given set of examples whose classification is known (hence the name supervised), while the latter try to group the data without knowing a priori the possible classes. Neural Networks and clustering algorithms are two of the most prominent examples of the two aforementioned categories. In this paper, we describe a machine learning pipeline to analyse multispectral and hyperspectral images. Our approach first adopts neural networks to identify relevant pixels and then applies a clustering algorithm to group the pixels according to two different criteria, namely intensity and variation of intensity.
引用
收藏
页码:1306 / 1311
页数:6
相关论文
共 50 条
  • [21] Predicting Sugarcane Biometric Parameters by UAV Multispectral Images and Machine Learning
    de Oliveira, Romario Porto
    Barbosa Junior, Marcelo Rodrigues
    Pinto, Antonio Alves
    Pereira Oliveira, Jean Lucas
    Zerbato, Cristiano
    Angeli Furlani, Carlos Eduardo
    AGRONOMY-BASEL, 2022, 12 (09):
  • [22] Machine Learning for Cloud Cover Detection Using Multispectral Satellite Images
    Verma P.
    Patil S.
    Annals of Data Science, 2023, 10 (06) : 1543 - 1557
  • [23] Hyperspectral to Multispectral: Optimal Selection of Mission-Relevant Bands using Machine Learning
    Naik, Kedar R.
    Wernersbach, Andrew I.
    Nilson, Michelle F.
    Fisher, Matthew D.
    Baugh, William M.
    Wiemokly, Gary D.
    ALGORITHMS, TECHNOLOGIES, AND APPLICATIONS FOR MULTISPECTRAL AND HYPERSPECTRAL IMAGING XXX, 2024, 13031
  • [24] Quality evaluation of pansharpened hyperspectral images generated using multispectral images
    Matsuoka, Masayuki
    Yoshioka, Hiroki
    MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL REMOTE SENSING TECHNOLOGY, TECHNIQUES AND APPLICATIONS IV, 2012, 8527
  • [25] FUSION OF MULTISPECTRAL AND HYPERSPECTRAL IMAGES BASED ON SPARSE REPRESENTATION
    Wei, Qi
    Bioucas-Dias, Jose M.
    Dobigeon, Nicolas
    Tourneret, Jean-Yves
    2014 PROCEEDINGS OF THE 22ND EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2014, : 1577 - 1581
  • [26] A Computationally Efficient Algorithm for Fusing Multispectral and Hyperspectral Images
    Guerra, Raul
    Lopez, Sebastian
    Sarmiento, Roberto
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (10): : 5712 - 5728
  • [27] Regularizing Subspace Representation for Fusing Hyperspectral and Multispectral Images
    Yang, Yanhong
    Wang, Congcong
    Feng, Yuan
    Zhang, Jianhua
    Zheng, Yuhui
    Chen, Shengyong
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 (12273-12286) : 12273 - 12286
  • [28] Fusion of Hyperspectral and Multispectral Images by Convolutional Sparse Representation
    Xing, Changda
    Cong, Yuhua
    Wang, Zhisheng
    Wang, Meiling
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [29] Fusion of Hyperspectral and Multispectral Images With Sparse and Proximal Regularization
    Yang, Feixia
    Ping, Ziliang
    Ma, Fei
    Wang, Yanwei
    IEEE ACCESS, 2019, 7 : 186352 - 186363
  • [30] A Locally Optimized Model for Hyperspectral and Multispectral Images Fusion
    Ren, Kai
    Sun, Weiwei
    Meng, Xiangchao
    Yang, Gang
    Peng, Jiangtao
    Huang, Jingfeng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60