Simulation of Leksell Gamma Knife-4C System with Different Phantoms Using PHITS and Geant4

被引:0
|
作者
Hung, B. T. [1 ]
Duong, T. T. [2 ]
Ha, B. N. [2 ]
机构
[1] Vietnam Atom Energy Inst, 59 Ly Thuong Kiet, Hanoi, Vietnam
[2] Univ Sci & Technol, 1 Dai Co Viet, Hanoi, Vietnam
关键词
Leksell gamma knife; Reference computational phantoms; PHITS; Geant4; MODEL;
D O I
10.55981/aij.2023.1266
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
This study used PHITS and Geant4 code packages to simulate a Leksell Gamma Knife system in order to determine radiation dose distribution in two types of phantoms. The results observed in the water phantom with configurations of single source and 201 sources are in good accord with the prior research, including both simulation and experiment. Several characteristics of Leksell Gamma Knife 4C, such as dose profiles, output factor, FWHM, and penumbra size, are calculated based on Monte Carlo simulations, which show the best consistency with other results. The output factors for collimators of 14 mm, 8 mm, and 4 mm are 0.984, 0.949, and 0.872, respectively. The simulation results with an adult mesh-type reference phantom reveal considerable similarities with the established radiosurgery plans. It indicates that the absorbed dose in brain tumors was highest when utilizing the 18 mm collimator and subsequently reduced with collimator size to 0.65, 0.25, and 0.5 with the 14 mm, 8 mm, and 4 mm collimators, respectively. The absorbed dose has a very low value for other essential organs and decreases with distance from the brain tumor. These findings may explain why the dose to organs decreases linearly as target distance, volume, and collimator size increase.(c) 2023 Atom Indonesia. All rights reserved
引用
下载
收藏
页码:13 / 20
页数:8
相关论文
共 50 条
  • [41] Industrial gamma computed tomography using high aspect ratio scintillator detectors (A Geant4 simulation)
    Askari, Mojtaba
    Taheri, Ali
    Iarijani, Majid Mojtahedzadeh
    Movafeghi, Amir
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2019, 923 : 109 - 117
  • [42] Modification of source contribution in PALS by simulation using Geant4 code
    Ning, Xia
    Cao, Xingzhong
    Li, Chong
    Li, Demin
    Zhang, Peng
    Gong, Yihao
    Xia, Rui
    Wang, Baoyi
    Wei, Long
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2017, 397 : 75 - 81
  • [43] Optical simulation of monolithic scintillator detectors using GATE/GEANT4
    van der Laan, D. J.
    Schaart, Dennis R.
    Maas, Marnix C.
    Beekman, Freek J.
    Bruyndonckx, Peter
    van Eijk, Carel W. E.
    PHYSICS IN MEDICINE AND BIOLOGY, 2010, 55 (06): : 1659 - 1675
  • [44] Technical note: Simulation of lung counting applications using Geant4
    Jutila, Henri
    Greenlees, Paul
    Torvela, Tiina
    Muikku, Maarit
    PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2023, 108
  • [45] Simulation of ion propagation in the microbeam line of CENBG using GEANT4
    Incerti, S
    Barberet, P
    Courtois, B
    Michelet-Habchi, C
    Moretto, P
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2003, 210 : 92 - 97
  • [46] A study on heavy-ion beam simulation using Geant4
    Kim, Kyungho
    Cho, Kihyeon
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2023, 83 (08) : 605 - 613
  • [47] Simulation of energy loss of fractionally charged particles using GEANT4
    Banik, S.
    Kashyap, V. K. S.
    Kelsey, M. H.
    Mohanty, B.
    Wright, D. H.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2020, 971 (971):
  • [48] Simulation of cellular irradiation with the CENBG microbeam line using GEANT4
    Incerti, S
    Barberet, P
    Villeneuve, R
    Aguer, P
    Gontier, E
    Michelet-Habchi, C
    Moretto, P
    Nguyen, DT
    Pouthier, T
    Smith, RW
    2003 IEEE NUCLEAR SCIENCE SYMPOSIUM, CONFERENCE RECORD, VOLS 1-5, 2004, : 1759 - 1764
  • [49] LHAASO-KM2A detector simulation using Geant4
    Cao, Zhen
    Aharonian, F.
    An, Q.
    Axikegu
    Bai, Y. X.
    Bao, Y. W.
    Bastieri, D.
    Bi, X. J.
    Bi, Y. J.
    Cai, J. T.
    Cao, Q.
    Cao, W. Y.
    Cao, Zhe
    Chang, J.
    Chang, J. F.
    Chen, A. M.
    Chen, E. S.
    Chen, Liang
    Chen, Lin
    Chen, Long
    Chen, M. J.
    Chen, M. L.
    Chen, Q. H.
    Chen, S. H.
    Chen, S. Z.
    Chen, T. L.
    Chen, Y.
    Cheng, N.
    Cheng, Y. D.
    Cui, M. Y.
    Cui, S. W.
    Cui, X. H.
    Cui, Y. D.
    Dai, B. Z.
    Dai, H. L.
    Dai, Z. G.
    Dong, X. Q.
    Duan, K. K.
    Fan, J. H.
    Fan, Y. Z.
    Fang, J.
    Fang, K.
    Feng, C. F.
    Feng, L.
    Feng, S. H.
    Feng, X. T.
    Feng, Y. L.
    Gabici, S.
    Gao, B.
    Gao, C. D.
    RADIATION DETECTION TECHNOLOGY AND METHODS, 2024, : 1437 - 1447
  • [50] Geant4/GATE Comparison of Geometry Optimization Algorithms for Internal Dosimetry Using Voxelized Phantoms
    S. Kaddouch
    N. El Khayati
    Physics of Particles and Nuclei Letters, 2020, 17 : 97 - 107