Technical note: Simulation of lung counting applications using Geant4

被引:1
|
作者
Jutila, Henri [1 ,2 ]
Greenlees, Paul [1 ,2 ]
Torvela, Tiina [3 ]
Muikku, Maarit [3 ]
机构
[1] Univ Jyvaskyla, Dept Phys, Accelerator Lab, FI-40014 Jyvaskyla, Finland
[2] Univ Helsinki, Helsinki Inst Phys, POB 64, FI-00014 Helsinki, Finland
[3] STUK Radiat & Nucl Safety Author, Jokiniemenkuja 1, Vantaa 01370, Finland
关键词
Lung counting; Voxel phantom; Geant4; simulation; Low-energy gamma-ray spectra;
D O I
10.1016/j.ejmp.2023.102573
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
A Geant4 simulation package has been developed to investigate and test detector configurations for lung counting applications. The objective of this study was to measure radiation emitted from the human body and to make a qualitative comparison of the results of the simulation with an experiment. Experimental data were measured from a plastic phantom with a set of lungs containing 241Am activity. For comparison, simulations in which 241Am activity was uniformly distributed inside the lungs of the ICRP adult reference computational phantom were made. The attenuation of photons by the chest wall was simulated and from this photopeak ef-ficiency and photon transmission were calculated as a function of photon energy. The transmission of 59.5 keV gamma rays, characteristic of the decay of 241Am, was determined from the computational phantom as a function of the angular position of the detector. It was found that the simulated detector response corresponds well with that from an experiment. The simulated count rate below 100 keV was 10.0(7) % greater compared to the experimental measurement. It was observed that 58.3(4) % of photons are attenuated for energies below 100 keV by the chest wall. In the simulation, the transmission of 59.5 keV gamma rays varied from 13.8(2) % to 38.0(4) % as a function of the angular position of the detector. The results obtained from the simulations show a satisfactory agreement with experimental data and the package can be used in the development of future body counting applications and enables optimization of the detection geometry.
引用
下载
收藏
页数:8
相关论文
共 50 条
  • [1] The Geant4 Simulation Toolkit and Applications For the Geant4 Collaboration
    Apostolakis, John
    MOLECULAR IMAGING: COMPUTER RECONSTRUCTION AND PRACTICE, 2008, : 73 - 92
  • [2] Space applications of the Geant4 simulation toolkit
    Daly, E
    Evans, H
    Lei, F
    Longo, F
    Magni, S
    Nartallo, R
    Nieminen, P
    Pia, MG
    ADVANCED MONTE CARLO FOR RADIATION PHYSICS, PARTICLE TRANSPORT SIMULATION AND APPLICATIONS, 2001, : 401 - 406
  • [3] PIXE simulation in Geant4
    Mantero, A.
    Ben Abdelouahed, H.
    Champion, C.
    El Bitar, Z.
    Francis, Z.
    Gueye, P.
    Incerti, S.
    Ivanchenko, V.
    Maire, M.
    X-RAY SPECTROMETRY, 2011, 40 (03) : 135 - 140
  • [4] PIXE Simulation With Geant4
    Pia, Maria Grazia
    Weidenspointner, Georg
    Augelli, Mauro
    Quintieri, Lina
    Saracco, Paolo
    Sudhakar, Manju
    Zoglauer, Andreas
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2009, 56 (06) : 3614 - 3649
  • [5] Geant4 simulation of continuum
    Silva, Z.
    Ferrer, A.
    Cristancho, F.
    VII LATIN AMERICAN SYMPOSIUM ON NUCLEAR PHYSICS AND APPLICATIONS, 2007, 947 : 489 - +
  • [6] GEANT4 APPLICATIONS IN SPACE
    Asai, Makoto
    ASTROPARTICLE, PARTICLE AND SPACE PHYSICS, DETECTORS AND MEDICAL PHYSICS APPLICATIONS, 2008, 4 : 719 - 728
  • [7] The ALICE Geant4 Simulation
    Hrivnacova, I.
    Datskova, O.
    Gheata, A.
    Morsch, A.
    Sicking, E.
    INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY AND NUCLEAR PHYSICS (CHEP 2010): EVENT PROCESSING, 2011, 331
  • [8] Geant4 developments and applications
    Allison, J
    Amako, K
    Apostolakis, J
    Araujo, H
    Dubois, PA
    Asai, M
    Barrand, G
    Capra, R
    Chauvie, S
    Chytracek, R
    Cirrone, GAP
    Cooperman, G
    Cosmo, G
    Cuttone, G
    Daquino, GG
    Donszelmann, M
    Dressel, M
    Folger, G
    Foppiano, F
    Generowicz, J
    Grichine, V
    Guatelli, S
    Gumplinger, P
    Heikkinen, A
    Hrivnacova, I
    Howard, A
    Incerti, S
    Ivanchenko, V
    Johnson, T
    Jones, F
    Koi, T
    Kokoulin, R
    Kossov, M
    Kurashige, H
    Lara, V
    Larsson, S
    Lei, F
    Link, O
    Longo, F
    Maire, M
    Mantero, A
    Mascialino, B
    McLaren, I
    Lorenzo, PM
    Minamimoto, K
    Murakami, K
    Nieminen, P
    Pandola, L
    Parlati, S
    Peralta, L
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2006, 53 (01) : 270 - 278
  • [9] A powerful simulation tool for medical physics applications: Geant4
    Barca, G
    Castrovillari, F
    Chauvie, S
    Cuce, D
    Foppiano, F
    Ghiso, G
    Guatelli, S
    Lamanna, E
    Lopes, MC
    Peralta, L
    Pia, MG
    Rodrigues, P
    Trindade, A
    Veltri, M
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2003, 125 : 80 - 84
  • [10] Simulation of LHCb RICH detectors using GEANT4
    Easo, S
    Belyaev, I
    Corti, G
    Jones, C
    Papanestis, J
    Pokorski, W
    Ranjard, F
    Robbe, P
    2004 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD, VOLS 1-7, 2004, : 2182 - 2185