Incidence-free sets and edge domination in incidence graphs

被引:1
|
作者
Spiro, Sam [1 ]
Adriaensen, Sam [2 ]
Mattheus, Sam [3 ]
机构
[1] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
[2] Vrije Univ Brussel, Dept Math & Data Sci, Brussels, Belgium
[3] Univ Calif San Diego, Dept Math, La Jolla, CA USA
基金
美国国家科学基金会;
关键词
design; edge domination; incidence-free sets; incidence structure; matching; ORDER;
D O I
10.1002/jcd.21925
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A set of edges Gamma of a graph G is an edge dominating set if every edge of G intersects at least one edge of Gamma, and the edge domination number gamma(e)(G) is the smallest size of an edge dominating set. Expanding on work of Laskar and Wallis, we study gamma(e)(G) for graphs G which are the incidence graph of some incidence structure D, with an emphasis on the case when D is a symmetric design. In particular, we show in this latter case that determining gamma(e)(G) is equivalent to determining the largest size of certain incidence-free sets of D. Throughout, we employ a variety of combinatorial, probabilistic and geometric techniques, supplemented with tools from spectral graph theory.
引用
收藏
页码:55 / 87
页数:33
相关论文
共 50 条
  • [1] Large incidence-free sets in geometries
    De Winter, Stefaan
    Schillewaert, Jeroen
    Verstraete, Jacques
    ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (04):
  • [2] Edge Domination and Incidence Domination in Vague Incidence Graphs and Its Application
    Praveen, Barti Aadal
    Ganesan, Deepa
    SYMMETRY-BASEL, 2022, 14 (08):
  • [3] Strong incidence domination in fuzzy incidence graphs
    Nair, Kavya R.
    Sunitha, M. S.
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 43 (03) : 2667 - 2678
  • [4] Domination number of incidence graphs of block designs
    Tang, Lang
    Zhou, Shenglin
    Chen, Jing
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 363
  • [5] Domination versus edge domination on claw-free graphs
    Civan, Yusuf
    Deniz, Zakir
    Yetim, Mehmet Akif
    DISCRETE APPLIED MATHEMATICS, 2023, 337 (171-172) : 171 - 172
  • [6] INCIDENCE AND STRONG EDGE COLORINGS OF GRAPHS
    BRUALDI, RA
    MASSEY, JJQ
    DISCRETE MATHEMATICS, 1993, 122 (1-3) : 51 - 58
  • [7] Domination in fuzzy incidence graphs based on valid edges
    Afsharmanesh, S.
    Borzooei, R. A.
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2022, 68 (01) : 101 - 124
  • [8] Domination in fuzzy incidence graphs based on valid edges
    S. Afsharmanesh
    R. A. Borzooei
    Journal of Applied Mathematics and Computing, 2022, 68 : 101 - 124
  • [9] Strong incidence domination in some operations of fuzzy incidence graphs and application in security allocation
    Nair, Kavya R.
    Sunitha, M. S.
    INTERNATIONAL JOURNAL OF MATHEMATICS FOR INDUSTRY, 2024,
  • [10] Application of Bipolar Neutrosophic sets to Incidence Graphs
    Akram, Muhammad
    Ishfaq, Nabeela
    Smarandache, Florentin
    Broumi, Said
    NEUTROSOPHIC SETS AND SYSTEMS, 2019, 27 : 180 - 200