A note on Reed's conjecture for triangle-free graphs

被引:0
|
作者
Abrishami, Gholamreza [1 ]
Erfanian, Ahmad [2 ]
机构
[1] Ferdowsi Univ Mashhad, Fac Math Sci, Dept Appl Math, POB 1159, Mashhad, Iran
[2] Ferdowsi Univ Mashhad, Ctr Excellence Anal Algebra Struct, Dept Pure Math, POB 1159, Mashhad, Iran
关键词
Reed's conjecture; Graph coloring; Chromatic number; Triangle-free graphs; Girth; CHROMATIC NUMBER; OMEGA; DELTA;
D O I
10.1016/j.disc.2023.113609
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Reed's Conjecture states that & chi;(G) & LE; ⠄(⠃(G) + & omega;(G) + 1)/2 ⠅, where & chi; (G), ⠃(G) and & omega;(G) are the chromatic number, maximum degree and clique number of a graph G, respectively. In this note, we prove this conjecture for maximal triangle-free graphs with maximum degree less than 7. Moreover, we show that Reed's Conjecture holds for all graphs with girth at least 5 up to at least 30 vertices and for all triangle-free graphs G up to at least 32 vertices such that & chi;(G) =⠆ 5 which improves similar results given in [Jan Goedgebeur, On minimal triangle-free 6-chromatic graphs, J. Graph Theory, 93(2020), 34-48.] & COPY; 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Sparse halves in triangle-free graphs
    Keevash, P
    Sudakov, B
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2006, 96 (04) : 614 - 620
  • [32] Weighted domination in triangle-free graphs
    Dankelmann, P
    Rautenbach, D
    Volkmann, L
    DISCRETE MATHEMATICS, 2002, 250 (1-3) : 233 - 239
  • [33] DEGREE SEQUENCES IN TRIANGLE-FREE GRAPHS
    ERDOS, P
    FAJTLOWICZ, S
    STATON, W
    DISCRETE MATHEMATICS, 1991, 92 (1-3) : 85 - 88
  • [34] Path decompositions of triangle-free graphs
    Chu, Yanan
    Fan, Genghua
    Zhou, Chuixiang
    DISCRETE MATHEMATICS, 2022, 345 (07)
  • [35] On the structure of dense triangle-free graphs
    Brandt, S
    COMBINATORICS PROBABILITY & COMPUTING, 1999, 8 (03): : 237 - 245
  • [36] On the number of pentagons in triangle-free graphs
    Hatami, Hamed
    Hladky, Jan
    Kral, Daniel
    Norine, Serguei
    Razborov, Alexander
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2013, 120 (03) : 722 - 732
  • [37] Counting colorings of triangle-free graphs
    Bernshteyn, Anton
    Brazelton, Tyler
    Cao, Ruijia
    Kang, Akum
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2023, 161 : 86 - 108
  • [38] Triangle-free Hamiltonian Kneser graphs
    Chen, YC
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2003, 89 (01) : 1 - 16
  • [39] ON THE EDGE DISTRIBUTION IN TRIANGLE-FREE GRAPHS
    KRIVELEVICH, M
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1995, 63 (02) : 245 - 260
  • [40] Colouring Vertices of Triangle-Free Graphs
    Dabrowski, Konrad
    Lozin, Vadim
    Raman, Rajiv
    Ries, Bernard
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2010, 6410 : 184 - 195