A note on Reed's conjecture for triangle-free graphs

被引:0
|
作者
Abrishami, Gholamreza [1 ]
Erfanian, Ahmad [2 ]
机构
[1] Ferdowsi Univ Mashhad, Fac Math Sci, Dept Appl Math, POB 1159, Mashhad, Iran
[2] Ferdowsi Univ Mashhad, Ctr Excellence Anal Algebra Struct, Dept Pure Math, POB 1159, Mashhad, Iran
关键词
Reed's conjecture; Graph coloring; Chromatic number; Triangle-free graphs; Girth; CHROMATIC NUMBER; OMEGA; DELTA;
D O I
10.1016/j.disc.2023.113609
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Reed's Conjecture states that & chi;(G) & LE; ⠄(⠃(G) + & omega;(G) + 1)/2 ⠅, where & chi; (G), ⠃(G) and & omega;(G) are the chromatic number, maximum degree and clique number of a graph G, respectively. In this note, we prove this conjecture for maximal triangle-free graphs with maximum degree less than 7. Moreover, we show that Reed's Conjecture holds for all graphs with girth at least 5 up to at least 30 vertices and for all triangle-free graphs G up to at least 32 vertices such that & chi;(G) =⠆ 5 which improves similar results given in [Jan Goedgebeur, On minimal triangle-free 6-chromatic graphs, J. Graph Theory, 93(2020), 34-48.] & COPY; 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] The diagnosability of triangle-free graphs
    Lin, Cheng-Kuan
    Teng, Yuan-Hsiang
    THEORETICAL COMPUTER SCIENCE, 2014, 530 : 58 - 65
  • [22] TOUGHNESS AND TRIANGLE-FREE GRAPHS
    BAUER, D
    VANDENHEUVEL, J
    SCHMEICHEL, E
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1995, 65 (02) : 208 - 221
  • [23] THE SPECTRUM OF TRIANGLE-FREE GRAPHS
    Balogh, Jozsef
    Clemen, Felix Christian
    Lidick, Bernard
    Norin, Sergey
    Volec, Jan
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2023, 37 (02) : 1173 - 1179
  • [24] TRIANGLE-FREE REGULAR GRAPHS
    SIDORENKO, AF
    DISCRETE MATHEMATICS, 1991, 91 (02) : 215 - 217
  • [25] ON SMALL TRIANGLE-FREE GRAPHS
    HANSON, D
    MACGILLIVRAY, G
    ARS COMBINATORIA, 1993, 35 : 257 - 263
  • [26] Pentagons in triangle-free graphs
    Lidicky, Bernard
    Pfender, Florian
    EUROPEAN JOURNAL OF COMBINATORICS, 2018, 74 : 85 - 89
  • [27] MINIMUM TRIANGLE-FREE GRAPHS
    RADZISZOWSKI, SP
    KREHER, DL
    ARS COMBINATORIA, 1991, 31 : 65 - 92
  • [28] On line graphs of subcubic triangle-free graphs
    Munaro, Andrea
    DISCRETE MATHEMATICS, 2017, 340 (06) : 1210 - 1226
  • [29] The Triangle-Free Graphs with Rank 6
    Long WANG
    Yizheng FAN
    Yi WANG
    Journal of Mathematical Research with Applications, 2014, 34 (05) : 517 - 528
  • [30] On triangle-free graphs with rank 7
    Duan, Fang
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2023,