A note on Reed's conjecture for triangle-free graphs
被引:0
|
作者:
Abrishami, Gholamreza
论文数: 0引用数: 0
h-index: 0
机构:
Ferdowsi Univ Mashhad, Fac Math Sci, Dept Appl Math, POB 1159, Mashhad, IranFerdowsi Univ Mashhad, Fac Math Sci, Dept Appl Math, POB 1159, Mashhad, Iran
Abrishami, Gholamreza
[1
]
Erfanian, Ahmad
论文数: 0引用数: 0
h-index: 0
机构:
Ferdowsi Univ Mashhad, Ctr Excellence Anal Algebra Struct, Dept Pure Math, POB 1159, Mashhad, IranFerdowsi Univ Mashhad, Fac Math Sci, Dept Appl Math, POB 1159, Mashhad, Iran
Erfanian, Ahmad
[2
]
机构:
[1] Ferdowsi Univ Mashhad, Fac Math Sci, Dept Appl Math, POB 1159, Mashhad, Iran
[2] Ferdowsi Univ Mashhad, Ctr Excellence Anal Algebra Struct, Dept Pure Math, POB 1159, Mashhad, Iran
Reed's Conjecture states that & chi;(G) & LE; ⠄(⠃(G) + & omega;(G) + 1)/2 ⠅, where & chi; (G), ⠃(G) and & omega;(G) are the chromatic number, maximum degree and clique number of a graph G, respectively. In this note, we prove this conjecture for maximal triangle-free graphs with maximum degree less than 7. Moreover, we show that Reed's Conjecture holds for all graphs with girth at least 5 up to at least 30 vertices and for all triangle-free graphs G up to at least 32 vertices such that & chi;(G) =⠆ 5 which improves similar results given in [Jan Goedgebeur, On minimal triangle-free 6-chromatic graphs, J. Graph Theory, 93(2020), 34-48.] & COPY; 2023 Elsevier B.V. All rights reserved.
机构:
Univ Fed Rio de Janeiro, Programa Engn Sistemas & Comp, Rio De Janeiro, BrazilUniv Fed Rio de Janeiro, Programa Engn Sistemas & Comp, Rio De Janeiro, Brazil
Botler, F.
Jimenez, A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Valparaiso, CIMFAV, Fac Ingn, Valparaiso, ChileUniv Fed Rio de Janeiro, Programa Engn Sistemas & Comp, Rio De Janeiro, Brazil
Jimenez, A.
Sambinelli, M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Inst Matemat & Estat, Sao Paulo, BrazilUniv Fed Rio de Janeiro, Programa Engn Sistemas & Comp, Rio De Janeiro, Brazil