Valorization of Ceramic Waste Powder for Compressive Strength and Durability of Fly Ash Geopolymer Cement

被引:10
|
作者
Rashad, Alaa M. [1 ,2 ]
Essa, Ghada M. F. [1 ]
Mosleh, Youssef A. [1 ]
Morsi, W. M. [3 ]
机构
[1] Housing & Bldg Natl Res Ctr HBRC, Bldg Mat Res & Qual Control Inst, Cairo, Egypt
[2] Shaqra Univ, Coll Engn, Civil Engn Dept, Al Dawadmi, Riyadh, Saudi Arabia
[3] Housing & Bldg Natl Res Ctr HBRC, Bldg Phys Res Inst, Cairo, Egypt
关键词
Ceramic waste powder; Fly ash geopolymer; Workability; Compressive strength; Durability; ALKALI-ACTIVATED MORTARS; MECHANICAL-PROPERTIES; REACTION-PRODUCTS; METAKAOLIN; MICROSTRUCTURE; REPLACEMENT; CONCRETE; PASTES; CAO;
D O I
10.1007/s13369-023-08428-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Enormous amounts of ceramic and fly ash (FA) wastes are generated annually by ceramic industries/demolition/rejected units and thermal power plants. To preserve virgin natural resources, limit disposal amounts, and limit environmental pollution, these wastes can be applied in the construction field as a binder material after alkali activation. This work aims to get rid ceramic waste powder (CWP) by recycling it as a part of FA geopolymer cement activated with sodium silicate to get improved properties, especially those after exposed to severe conditions. For this purpose, the FA was partially replaced with CWP at levels ranging from 10 to 50% with a stride of 10 wt.%. The effect of CWP on the flowability, compressive strength, up to 240 days, and different durability aspects were investigated. After curing for 28 days, specimens were subjected to three different types of durability: accelerating aging, wetting/drying cycles in sodium sulfate solution, and simulated tidal zone. The identification of the different decomposition phases was accomplished through the utilization of X-ray diffraction (XRD), thermogravimetric analysis (TGA)/its derivative (TGA), and scanning electron microscopy (SEM). The results showed 27.5-55% reduction in the flowability with including 10-50% CWP. The compressive strength increased with including up to 40% CWP. The 28 days compressive strength was enhanced by 20.1-42.97% with including 10-40% CWP. All different types of properties were enhanced with the incorporation of up to 40% CWP. Contrarily, incorporating 50% CWP showed a negative effect on compressive strength and different types of durability. The XRD of the neat FA geopolymer sample before and after exposure to severe conditions showed the crystalline phases of quartz, hematite and mullite, whilst that containing CWP showed the crystalline phases of quartz, mullite, hematite and albite. The TGA analysis showed the formation of aluminosilicate (N-A-S-H) gel as the main hydration product in the samples with/without CWP, the amount of this gel decreased after exposure to severe conditions.
引用
收藏
页码:2767 / 2795
页数:29
相关论文
共 50 条
  • [21] PHYSICAL PROPERTIES AND COMPRESSIVE STRENGTH OF PRESSED AND CAST FLY ASH GEOPOLYMER
    Jia-ni, L.
    Yun-ming, L.
    Abdullah, M. M. A. B.
    Hoe-woon, T.
    Yong-jie, H.
    Shee-ween, O.
    Wan-en, O.
    ARCHIVES OF METALLURGY AND MATERIALS, 2024, 69 (04) : 1375 - 1379
  • [22] Characterization and compressive strength of fly ash based-geopolymer paste
    Widayanti, Ari
    Soemitro, Ria Asih Aryani
    Suprayitno, Hitapriya
    Ekaputri, Januarti Jaya
    4TH INTERNATIONAL CONFERENCE ON REHABILITATION AND MAINTENANCE IN CIVIL ENGINEERING (ICRMCE 2018), 2018, 195
  • [23] Effect of Curing Condition on Compressive Strength of Fly Ash Geopolymer Concrete
    Zhang, Hongen
    Shi, Xiaoshuang
    Wang, Qingyuan
    ACI MATERIALS JOURNAL, 2018, 115 (02) : 191 - 196
  • [24] Effect of parameters on the compressive strength of fly ash based geopolymer concrete
    Chithambaram, S. Jeeva
    Kumar, Sanjay
    Prasad, Madan M.
    Adak, Dibyendu
    STRUCTURAL CONCRETE, 2018, 19 (04) : 1202 - 1209
  • [25] Compressive strength and microstructural characteristics of class C fly ash geopolymer
    Guo, Xiaolu
    Shi, Huisheng
    Dick, Warren A.
    CEMENT & CONCRETE COMPOSITES, 2010, 32 (02): : 142 - 147
  • [26] Factors affecting the compressive strength of class C fly ash geopolymer
    Li, XueYing
    Zheng, EnZu
    Ma, ChunLong
    ARCHITECTURE AND BUILDING MATERIALS, PTS 1 AND 2, 2011, 99-100 : 960 - 964
  • [27] Compressive strength of medium calcium fly ash based geopolymer paste
    Guntur, I. N.
    Tjaronge, M. W.
    Irmawaty, R.
    Ekaputri, J. J.
    3RD INTERNATIONAL CONFERENCE ON CIVIL AND ENVIRONMENTAL ENGINEERING (ICCEE 2019), 2020, 419
  • [28] Contribution of Fineness Level of Fly Ash to the Compressive Strength of Geopolymer Mortar
    Firdaus
    Yunus, Ishak
    Rosidawani
    INTERNATIONAL SYMPOSIUM ON CIVIL AND ENVIRONMENTAL ENGINEERING 2016 (ISCEE 2016), 2017, 103
  • [29] Improvement of durability of cement pipe with high calcium fly ash geopolymer covering
    Chindaprasirt, Prinya
    Rattanasak, Ubolluk
    CONSTRUCTION AND BUILDING MATERIALS, 2016, 112 : 956 - 961
  • [30] The Effects of Bottom Ash on Setting Time and Compressive Strength of Fly Ash Geopolymer Paste
    Affandhie, B. A.
    Kurniasari, P. T.
    Darmawan, M. S.
    Subekti, S.
    Wibowo, B.
    Husin, N. A.
    Bayuaji, R.
    Irawan, S.
    INTERNATIONAL CONFERENCE OF APPLIED SCIENCE AND TECHNOLOGY FOR INFRASTRUCTURE ENGINEERING, 2017, 267