Microfabricated sensor device for CW and pulsed laser power measurements

被引:1
|
作者
Hu, Yuqiang [1 ,2 ,3 ]
Xie, Fei [2 ,4 ]
Liu, Qihui [2 ,4 ]
Wang, Nan [2 ,4 ]
Zhang, Jin [2 ]
Liu, Yichen [2 ]
Su, Yongquan [1 ,2 ,3 ]
Wang, Yang [2 ,4 ]
Chen, Hao [2 ,4 ]
Wu, Zhenyu [1 ,2 ,3 ,4 ]
机构
[1] Shanghai Univ, Sch Microelect, Shanghai 200444, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Microsyst & Infarmat Technol, State Key Lab Transducer Thchnol, Shanghai 200050, Peoples R China
[3] Shanghai Ind Technol Res Inst, Shanghai 201800, Peoples R China
[4] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
关键词
RADIATION-PRESSURE; FORCE; ABLATION; BEAM;
D O I
10.1364/OE.476509
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
On-line measurement is a trend of development toward laser-based applications. We present a fiber-integrated force sensor device for laser power measurement with both CW mode and pulse mode based on laser radiometric heat and radiation force sensing simultaneously. The sensor device is fabricated using a standard microfabrication process. Laser intensity is determined through the displacement of a movable mirror measured by an integrated Fabry-Perot interferometer. Compared with the performance of the device in the ambient condition, a non-linearity error of 0.02% and measurement uncertainty of 2.06% is observed in the quasi-vacuum condition for CW laser illumination. This device can measure a CW laser power with a 46.4 mu W/Hz(1/2) noise floor and a minimum detection limit of 0.125mW. For a pulsed laser, a non-linearity error of 0.37% and measurement uncertainty of 2.08% is achieved with a noise floor of 1.3 mu J/Hz(1/2) and a minimum detection limit of 3 mu J. (c) 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
引用
收藏
页码:2330 / 2344
页数:15
相关论文
共 50 条
  • [41] Improvement in switching characteristics of HTS power electric device prepared by pulsed laser deposition
    Yamagata, Y
    Shingai, K
    Ikegami, T
    Ebihara, K
    Inoue, N
    [J]. IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 1997, 7 (02) : 1447 - 1450
  • [42] IMPROVEMENTS TO THE DIAGNOSTICS OF BEAM QUALITY IN CW AND PULSED LASER SYSTEMS
    CUTOLO, A
    ZENI, L
    [J]. OPTICS COMMUNICATIONS, 1992, 89 (2-4) : 223 - 228
  • [43] Laser sources for polarized electron beams in cw and pulsed accelerators
    Hatziefremidis, A
    Papadopoulos, DN
    Fraser, D
    Avramopoulos, H
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1999, 431 (1-2): : 46 - 52
  • [44] Palladium nanoparticles produced by CW and pulsed laser ablation in water
    Boutinguiza, M.
    Comesana, R.
    Lusquinos, F.
    Riveiro, A.
    del Val, J.
    Pou, J.
    [J]. APPLIED SURFACE SCIENCE, 2014, 302 : 19 - 23
  • [45] POWER RADIATION STABILIZATION OF CW NDYAG LASER
    GOLYAEV, YD
    EVTYUKHOV, KN
    KAPTSOV, LN
    [J]. RADIOTEKHNIKA I ELEKTRONIKA, 1980, 25 (11): : 2467 - 2469
  • [46] OUTPUT POWER CHARACTERISTICS OF A CW GASDYNAMIC LASER
    KASUYA, K
    KUMASAKA, T
    MURASAKI, T
    [J]. JAPANESE JOURNAL OF APPLIED PHYSICS, 1973, 12 (05) : 771 - 772
  • [47] Reduction of heating rate in a microfabricated ion trap by pulsed-laser cleaning
    Allcock, D. T. C.
    Guidoni, L.
    Harty, T. P.
    Ballance, C. J.
    Blain, M. G.
    Steane, A. M.
    Lucas, D. M.
    [J]. NEW JOURNAL OF PHYSICS, 2011, 13
  • [48] A Printed and Microfabricated Sensor Device for the Sensitive Low Volume Measurement of Aqueous Ammonia
    Brannelly, N. T.
    Killard, A. J.
    [J]. ELECTROANALYSIS, 2017, 29 (01) : 162 - 171
  • [49] MEASUREMENTS ON MOLECULAR NITROGEN PULSED LASER
    KASUYA, T
    LIDE, DR
    [J]. APPLIED OPTICS, 1967, 6 (01): : 69 - &
  • [50] Pulsed Laser Precision Length Measurements
    B. S. Mogil'nitskii
    A. S. Tolstikov
    V. Ya. Cherepanov
    [J]. Measurement Techniques, 2004, 47 : 757 - 761