DETERMINATION FOR THE 2D INCOMPRESSIBLE NAVIER-STOKES EQUATIONS IN LIPSCHITZ DOMAIN

被引:0
|
作者
Yang, Xin-Guang [1 ]
Hu, Meng [1 ]
Ma, To Fu [2 ]
Yuan, Jinyun [1 ,3 ]
机构
[1] Henan Normal Univ, Dept Math & Informat Sci, Xinxiang 453007, Henan, Peoples R China
[2] Univ Brasilia, Dept Math, BR-70910900 Brasilia, DF, Brazil
[3] Dongguan Univ Technol, Sch Comp Sci & Technol, Dongguan, Peoples R China
基金
中国国家自然科学基金;
关键词
Navier-Stokes equations; Lipschitz domain; determining modes; Grashof number; DETERMINING MODES; DIRICHLET PROBLEM; VOLUME ELEMENTS; DIMENSION; DYNAMICS; SYSTEM;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The number of determining modes is estimated for the 2D Navier-Stokes equations subject to an inhomogeneous boundary condition in Lipschitz domains by using an appropriate set of points in the configuration space to represent the flow by virtue of the Grashof number and the measure of Lipschitz boundary based on a stream function and some delicate estimates. The asymptotic determination via finite functionals for 2D autonomous Navier-Stokes equations in Lipschitz domains has been derived for the trajectories inside global attractor with finite Hausdorff dimension, which leads to this fluid flow reducing to a functional ordinary differential equation.
引用
收藏
页码:2301 / 2328
页数:28
相关论文
共 50 条
  • [21] Convergence of the relaxed compressible Navier-Stokes equations to the incompressible Navier-Stokes equations
    Ju, Qiangchang
    Wang, Zhao
    APPLIED MATHEMATICS LETTERS, 2023, 141
  • [22] Asymptotic analysis of the linearized Navier-Stokes equations in a general 2D domain
    Temam, R
    Wang, XM
    ASYMPTOTIC ANALYSIS, 1997, 14 (04) : 293 - 321
  • [23] Feedback stabilization for the 2D Navier-Stokes equations
    Fursikov, AV
    NAVIER-STOKES EQUATIONS: THEORY AND NUMERICAL METHODS, 2002, 223 : 179 - 196
  • [24] Generator of Solutions for 2D Navier-Stokes Equations
    Koptev, Alexander, V
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2014, 7 (03): : 324 - 330
  • [25] Anticipating stochastic 2D Navier-Stokes equations
    Mohammed, Salah
    Zhang, Tusheng
    JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 264 (06) : 1380 - 1408
  • [26] Topology of trajectories of the 2D Navier-Stokes equations
    Lee, Jon
    CHAOS, 1992, 2 (04) : 537 - 565
  • [27] Dynamics of stochastic 2D Navier-Stokes equations
    Mohammed, Salah
    Zhang, Tusheng
    JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (10) : 3543 - 3591
  • [28] On nonoverlapping domain decomposition methods for the incompressible Navier-Stokes equations
    Xu, XJ
    Chow, CO
    Lui, SH
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2005, 39 (06): : 1251 - 1269
  • [29] DYNAMICS OF THE 2D NAVIER-STOKES EQUATIONS WITH SUBLINEAR OPERATORS IN LIPSCHITZ-LIKE DOMAINS
    Yang, Xin-Guang
    Wang, Rong-Nian
    Yan, Xingjie
    Miranville, Alain
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2021, 41 (07) : 3343 - 3366
  • [30] ARBITRARY DOMAIN VELOCITY ANALYSES FOR THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS
    HWANG, YH
    JOURNAL OF COMPUTATIONAL PHYSICS, 1994, 110 (01) : 134 - 149