Metal organic framework-based cathode materials for aqueous zinc-ion batteries: Recent advances and perspectives

被引:14
|
作者
Chen, Xiudong [1 ]
Liu, Jin-Hang [1 ]
Jiang, Huixiong [1 ]
Zhan, Changchao [1 ]
Gao, Yun [2 ]
Li, Jiayang [3 ]
Zhang, Hang [2 ,3 ]
Cao, Xiaohua [1 ]
Dou, Shixue [4 ]
Xiao, Yao [2 ,5 ]
机构
[1] Jiujiang Univ, Jiangxi Prov Engn Res Ctr Ecol Chem Ind, Sch Chem & Chem Engn, Jiujiang 332005, Peoples R China
[2] Wenzhou Univ, Inst Carbon Neutralizat, Coll Chem & Mat Engn, Wenzhou 325035, Peoples R China
[3] Univ Wollongong, Inst Superconducting & Elect Mat, Australian Inst Innovat Mat, Innovat Campus,Squires Way, North Wollongong, NSW 2522, Australia
[4] Univ Shanghai Sci & Technol, Inst Energy Mat Sci, Shanghai 200093, Peoples R China
[5] 15 Nankai Univ, Key Lab Adv Energy Mat Chem, Minist Educ, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
Aqueous zinc-ion batteries; Metal-organic framework; Cathode materials; Morphology; Design strategies; HIGH-PERFORMANCE CATHODE; PRUSSIAN BLUE ANALOGS; RECHARGEABLE BATTERIES; CYCLING STABILITY; RECENT PROGRESS; HEXACYANOFERRATE; CHALLENGES;
D O I
10.1016/j.ensm.2023.103168
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
With the widespread use of lithium-ion batteries (LIBs) in recent decades, lithium resources are at risk of depletion. Electrochemical energy storage using LIBs cannot keep pace with socioeconomic development. Therefore, it is necessary to develop electrochemical systems capable of storing large amounts of energy in the future to replace LIBs. As a result of their environmental friendliness, low cost, and high safety, aqueous zinc-ion batteries (AZIBs) are potential replacements for LIBs. Several challenges remain for the commercialization of AZIBs, however, such as the development of high-performance cathodes. In recent years, metal-organic frameworks (MOFs) and related materials have evolved into potential cathode materials for AZIBs due to their high porosities, tunable structures, and multifunctionality. Hence, this review summarizes the latest progress in MOFbased cathode materials for AZIBs. We present and discuss different types of MOF-based electrode materials (vanadium/manganese-based MOFs and their derivatives, Prussian blue and its analogs, and other MOFs and their derivatives), focusing on the impacts of the structures and morphologies of MOF materials on AZIBs performance as well as investigating how zinc ions are stored. Finally, future developments of MOF-based materials for AZIBs are proposed. Our work is expected to spur innovative research into new MOF-based electrode materials for AZIBs and provide guidance for storing and converting energy in the future.
引用
收藏
页数:27
相关论文
共 50 条
  • [21] Recent Progress and Perspectives on Metal-Organic Framework-Based Electrode Materials for Metal-Ion Batteries and Supercapacitors
    Zhao, Min
    Tong, Shengfu
    [J]. ENERGY & FUELS, 2024, 38 (15) : 13796 - 13818
  • [22] Recent advances of organic polymers for zinc-ion batteries
    Wang, Yue
    Li, Gaopeng
    Wang, Xinlu
    Deng, Jianxue
    Yu, Wensheng
    Liu, Guixia
    Yang, Ying
    Dong, Xiangting
    Wang, Jinxian
    Liu, Dongtao
    [J]. SUSTAINABLE ENERGY & FUELS, 2022, 6 (24) : 5439 - 5458
  • [23] Metal organic framework-based materials for metal-ion batteries
    Yang, Wenlong
    Wang, Jun
    Jian, Jikang
    [J]. ENERGY STORAGE MATERIALS, 2024, 66
  • [24] Recent Advances in Graphene-based Materials for Zinc-ion Batteries
    Li, Le
    Yue, Shi
    Jia, Shaofeng
    Wang, Conghui
    Zhang, Dan
    [J]. CHEMICAL RECORD, 2024, 24 (04):
  • [25] Zinc Metal-Free Anode Materials for High-Performance Aqueous Zinc-Ion Batteries: Recent Advances, Mechanisms, Challenges and Perspectives
    Liao, Yanxin
    Yang, Chun
    Bai, Jie
    Sun, Linghao
    Chen, Lingyun
    [J]. ACS Sustainable Chemistry and Engineering, 2024, 12 (47): : 17044 - 17068
  • [26] Recent Progress and Regulation Strategies of Layered Materials as Cathode of Aqueous Zinc-Ion Batteries
    Yuan Yuan
    Si Wu
    Xiaoxue Song
    Jin Yong Lee
    Baotao Kang
    [J]. Energy & Environmental Materials., 2024, 7 (03) - 35
  • [27] Recent Progress and Regulation Strategies of Layered Materials as Cathode of Aqueous Zinc-Ion Batteries
    Yuan, Yuan
    Wu, Si
    Song, Xiaoxue
    Lee, Jin Yong
    Kang, Baotao
    [J]. ENERGY & ENVIRONMENTAL MATERIALS, 2024, 7 (03)
  • [28] A Review on Recent Advances and Perspectives in Hydrogel Polymer Electrolytes for Aqueous Zinc-Ion Batteries
    Radjendirane, Aakash Carthick
    Sha, Faisal M.
    Ramasamy, Senthilkumar
    Rajaram, Rajamohan
    Angaiah, Subramania
    [J]. ENERGY TECHNOLOGY, 2024, 12 (10)
  • [29] Research progresses on cathode materials of aqueous zinc-ion batteries
    Zengyuan Fan
    Jiawei Wang
    Yunpeng Wu
    Xuedong Yan
    Dongmei Dai
    XingLong Wu
    [J]. JournalofEnergyChemistry., 2024, 97 (10) - 264
  • [30] Cathode materials for aqueous zinc-ion batteries: A mini review
    Zhou, Tao
    Zhu, Limin
    Xie, Lingling
    Han, Qing
    Yang, Xinli
    Chen, Lei
    Wang, Gongke
    Cao, Xiaoyu
    [J]. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 605 : 828 - 850