Research progresses on cathode materials of aqueous zinc-ion batteries

被引:0
|
作者
Zengyuan Fan [1 ]
Jiawei Wang [1 ,2 ]
Yunpeng Wu [1 ,2 ]
Xuedong Yan [3 ]
Dongmei Dai [4 ]
XingLong Wu [5 ]
机构
[1] Jilin Provincial Science and Technology Innovation Centre of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry, School of Chemistry and Environmental Engineering, Changchun Uni
[2] Chongqing Research Institute, Changchun University of Science and Technology
[3] Institute of Energy Storage and Conversion Technology, College of Chemical Engineering,Ningbo Polytechnic
[4] School of Chemistry and Chemical Engineering, Henan Normal University
[5] MOE Key Laboratory for UV Light-Emitting Materials and Technology, School of Physics, Northeast Normal
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Electrochemical energy storage and conversion techniques that exhibit the merits such as high energy density,rapid response kinetics,economical maintenance requirements and expedient installation procedures will hold a pivotal role in the forthcoming energy storage technologies revolution.In recent years,aqueous zinc-ion batteries(AZIBs) have garnered substantial attention as a compelling candidate for large-scale energy storage systems,primarily attributable to their advantageous featu res encompassing cost-effectiveness,environmental sustainability,and robust safety profiles.Currently,one of the primary factors hindering the further development of AZIBs originates from the challenge of cathode materials.Specifically,the three mainstream types of mainstream cathode materials,in terms of manganese-based compounds,vanadium-based compounds and Prussian blue analogues,surfer from the dissolution of Mn2+,in the low discharge voltage,and the low specific capacity,respectively.Several strategies have been developed to compensation the above intrinsic defects for these cathode materials,including the ionic doping,defect engineering,and materials match.Accordingly,this review first provides a systematic summarization of the zinc storage mechanism in AZIBs,following by the inherent merit and demerit of three kind of cathode materials during zinc storage analyzed from their structure characteristic,and then the recent development of critical strategies towards the intrinsic insufficiency of these cathode materials.In this review,the methodologies aimed at enhancing the efficacy of manganese-based and vanadium-based compounds are emphasis emphasized.Additionally,the article outlines the future prospective directions as well as strategic proposal for cathode materials in AZIBs.
引用
下载
收藏
页码:237 / 264
页数:28
相关论文
共 50 条
  • [1] Research progresses on cathode materials of aqueous zinc-ion batteries
    Fan, Zengyuan
    Wang, Jiawei
    Wu, Yunpeng
    Yan, Xuedong
    Dai, Dongmei
    Wu, Xing-Long
    JOURNAL OF ENERGY CHEMISTRY, 2024, 97 : 237 - 264
  • [2] Research Progresses on Vanadium-Based Cathode Materials for Aqueous Zinc-Ion Batteries
    Heng, Yongli
    Gu, Zhenyi
    Guo, Jinzhi
    Wu, Xinglong
    ACTA PHYSICO-CHIMICA SINICA, 2021, 37 (03) : 1 - 16
  • [3] Research status and prospects of cathode materials for aqueous zinc-ion batteries
    Yang W.
    Xie X.
    Wu R.
    Tian H.
    Wang X.
    Tang W.
    Deng Y.
    Liu R.
    Meitan Xuebao/Journal of the China Coal Society, 2022, 47 (09): : 3351 - 3364
  • [4] The progress of cathode materials in aqueous zinc-ion batteries
    Zhou, Xinchi
    Jiang, Shan
    Zhu, Siao
    Xiang, Shuangfei
    Zhang, Zhen
    Xu, Xiangyu
    Xu, Yuanyuan
    Zhou, Jian
    Tan, Suchong
    Pan, Zhengdao
    Rao, Xingyou
    Wu, Yutong
    Wang, Zhoulu
    Liu, Xiang
    Zhang, Yi
    Zhou, Yunlei
    NANOTECHNOLOGY REVIEWS, 2023, 12 (01)
  • [5] Cathode materials for aqueous zinc-ion batteries: A mini review
    Zhou, Tao
    Zhu, Limin
    Xie, Lingling
    Han, Qing
    Yang, Xinli
    Chen, Lei
    Wang, Gongke
    Cao, Xiaoyu
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 605 : 828 - 850
  • [6] Recent advances in cathode materials of rechargeable aqueous zinc-ion batteries
    Wang, L.
    Zheng, J.
    MATERIALS TODAY ADVANCES, 2020, 7
  • [7] Microstructural Engineering of Cathode Materials for Advanced Zinc-Ion Aqueous Batteries
    Pam, Mei Er
    Yan, Dong
    Yu, Juezhi
    Fang, Daliang
    Guo, Lu
    Li, Xue Liang
    Li, Tian Chen
    Lu, Xunyu
    Ang, Lay Kee
    Amal, Rose
    Han, Zhaojun
    Yang, Hui Ying
    ADVANCED SCIENCE, 2021, 8 (01)
  • [8] Recent Progress on Phosphate Cathode Materials for Aqueous Zinc-Ion Batteries
    Ou, Linna
    Ou, Huihuang
    Qin, Mulan
    Liu, Zhexuan
    Fang, Guozhao
    Cao, Xinxin
    Liang, Shuquan
    CHEMSUSCHEM, 2022, 15 (19)
  • [9] Research Progress on Anode Materials for Aqueous Zinc-ion Batteries
    Lan B.
    Zhang W.
    Luo P.
    Tang C.
    Tang W.
    Zuo C.
    Dong S.
    Chen L.
    Cailiao Daobao/Materials Reports, 2020, 34 (13): : 13068 - 13075
  • [10] Mixed copper-zinc hexacyanoferrates as cathode materials for aqueous zinc-ion batteries
    Kasiri, Ghoncheh
    Glenneberg, Jens
    Hashemi, Amir Bani
    Kun, Robert
    La Mantia, Fabio
    ENERGY STORAGE MATERIALS, 2019, 19 : 360 - 369