Metal organic framework-based cathode materials for aqueous zinc-ion batteries: Recent advances and perspectives

被引:14
|
作者
Chen, Xiudong [1 ]
Liu, Jin-Hang [1 ]
Jiang, Huixiong [1 ]
Zhan, Changchao [1 ]
Gao, Yun [2 ]
Li, Jiayang [3 ]
Zhang, Hang [2 ,3 ]
Cao, Xiaohua [1 ]
Dou, Shixue [4 ]
Xiao, Yao [2 ,5 ]
机构
[1] Jiujiang Univ, Jiangxi Prov Engn Res Ctr Ecol Chem Ind, Sch Chem & Chem Engn, Jiujiang 332005, Peoples R China
[2] Wenzhou Univ, Inst Carbon Neutralizat, Coll Chem & Mat Engn, Wenzhou 325035, Peoples R China
[3] Univ Wollongong, Inst Superconducting & Elect Mat, Australian Inst Innovat Mat, Innovat Campus,Squires Way, North Wollongong, NSW 2522, Australia
[4] Univ Shanghai Sci & Technol, Inst Energy Mat Sci, Shanghai 200093, Peoples R China
[5] 15 Nankai Univ, Key Lab Adv Energy Mat Chem, Minist Educ, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
Aqueous zinc-ion batteries; Metal-organic framework; Cathode materials; Morphology; Design strategies; HIGH-PERFORMANCE CATHODE; PRUSSIAN BLUE ANALOGS; RECHARGEABLE BATTERIES; CYCLING STABILITY; RECENT PROGRESS; HEXACYANOFERRATE; CHALLENGES;
D O I
10.1016/j.ensm.2023.103168
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
With the widespread use of lithium-ion batteries (LIBs) in recent decades, lithium resources are at risk of depletion. Electrochemical energy storage using LIBs cannot keep pace with socioeconomic development. Therefore, it is necessary to develop electrochemical systems capable of storing large amounts of energy in the future to replace LIBs. As a result of their environmental friendliness, low cost, and high safety, aqueous zinc-ion batteries (AZIBs) are potential replacements for LIBs. Several challenges remain for the commercialization of AZIBs, however, such as the development of high-performance cathodes. In recent years, metal-organic frameworks (MOFs) and related materials have evolved into potential cathode materials for AZIBs due to their high porosities, tunable structures, and multifunctionality. Hence, this review summarizes the latest progress in MOFbased cathode materials for AZIBs. We present and discuss different types of MOF-based electrode materials (vanadium/manganese-based MOFs and their derivatives, Prussian blue and its analogs, and other MOFs and their derivatives), focusing on the impacts of the structures and morphologies of MOF materials on AZIBs performance as well as investigating how zinc ions are stored. Finally, future developments of MOF-based materials for AZIBs are proposed. Our work is expected to spur innovative research into new MOF-based electrode materials for AZIBs and provide guidance for storing and converting energy in the future.
引用
收藏
页数:27
相关论文
共 50 条
  • [31] Research progresses on cathode materials of aqueous zinc-ion batteries
    Fan, Zengyuan
    Wang, Jiawei
    Wu, Yunpeng
    Yan, Xuedong
    Dai, Dongmei
    Wu, Xing-Long
    [J]. JOURNAL OF ENERGY CHEMISTRY, 2024, 97 : 237 - 264
  • [32] Non-aqueous zinc-ion batteries based on an open framework cathode
    Liao, Yi-Chih
    Kaveevivitchai, Watchareeya
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [33] Metal-Organic Framework Integrated Anodes for Aqueous Zinc-Ion Batteries
    Yuksel, Recep
    Buyukcakir, Onur
    Seong, Won Kyung
    Ruoff, Rodney S.
    [J]. ADVANCED ENERGY MATERIALS, 2020, 10 (16)
  • [34] Metal-Organic Framework Integrated Anodes for Aqueous Zinc-Ion Batteries
    Yuksel, Recep
    Buyukcakir, Onur
    Seong, Won Kyung
    Ruoff, Rodney S.
    [J]. Advanced Energy Materials, 2020, 10 (16):
  • [35] Recent advances of cathode materials for zinc-ion hybrid capacitors
    Liu, Yuan
    Wu, Lijun
    [J]. NANO ENERGY, 2023, 109
  • [36] Recent Advances in Electrolytes for "Beyond Aqueous" Zinc-Ion Batteries
    Lv, Yanqun
    Xiao, Ying
    Ma, Longtao
    Zhi, Chunyi
    Chen, Shimou
    [J]. ADVANCED MATERIALS, 2022, 34 (04)
  • [37] Manganese-based materials as cathode for rechargeable aqueous zinc-ion batteries
    Guo, Yixuan
    Zhang, Yixiang
    Lu, Hongbin
    [J]. BATTERY ENERGY, 2022, 1 (02):
  • [38] Hydrated Metal Vanadate Heterostructures as Cathode Materials for Stable Aqueous Zinc-Ion Batteries
    Zhang, Siqi
    Wang, Yan
    Wu, Yunyu
    Zhang, Guanlun
    Chen, Yanli
    Wang, Fengyou
    Fan, Lin
    Yang, Lili
    Wu, Qiong
    [J]. MOLECULES, 2024, 29 (16):
  • [39] Recent Advances in Vanadium-Based Aqueous Rechargeable Zinc-Ion Batteries
    Liu, Shude
    Kang, Ling
    Kim, Jong Min
    Chun, Young Tea
    Zhang, Jian
    Jun, Seong Chan
    [J]. ADVANCED ENERGY MATERIALS, 2020, 10 (25)
  • [40] Recent advances and future perspectives for aqueous zinc-ion capacitors
    Huang, Zhaodong
    Zhang, Rong
    Zhang, Shaoce
    Li, Pei
    Li, Chuan
    Zhi, Chunyi
    [J]. MATERIALS FUTURES, 2022, 1 (02):