The two-dimensional stationary Navier-Stokes equations in toroidal Besov spaces

被引:1
|
作者
Tsurumi, Hiroyuki [1 ,2 ]
机构
[1] Waseda Univ, Fac Sci & Engn, Dept Math, Tokyo, Japan
[2] Waseda Univ, Fac Sci & Engn, Dept Math, Tokyo 1698555, Japan
关键词
ill-posedness; Navier-Stokes equations; stationary solutions; toroidal Besov spaces; well-posedness; ILL-POSEDNESS; WELL-POSEDNESS; MORREY SPACES; EXISTENCE; STEADY;
D O I
10.1002/mana.202000208
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the stationary Navier-Stokes equations in the two-dimensional torus T2$\mathbb {T}<^>2$. For any epsilon>0$\varepsilon >0$, we show the existence, uniqueness, and continuous dependence of solutions in homogeneous toroidal Besov spaces B?p+epsilon,q-1+2p(T2)$\dot{B}<^>{-1+\frac{2}{p}}_{p+\varepsilon , q}(\mathbb {T}<^>2)$ for given small external forces in B?p+epsilon,q-3+2p(T2)$\dot{B}<^>{-3+\frac{2}{p}}_{p+\varepsilon , q}(\mathbb {T}<^>2)$ when 1 <= p<2$1\le p <2$. These spaces become closer to the scaling invariant ones if the difference epsilon becomes smaller. This well-posedness is proved by using the embedding property and the para-product estimate in homogeneous Besov spaces. In addition, for the case (p,q)is an element of({2}x(2,infinity])?((2,infinity]x[1,infinity])$(p,q)\in (\lbrace 2\rbrace \times (2,\infty ])\cup ((2,\infty ]\times [1,\infty ])$, we can show the ill-posedness, even in the scaling invariant spaces. Actually in such cases of p and q, we can prove that ill-posedness by showing the discontinuity of a certain solution map from B?p,q-3+2p(T2)$\dot{B}<^>{-3+\frac{2}{p}}_{p ,q}(\mathbb {T}<^>2)$ to B?p,q-1+2p(T2)$\dot{B}<^>{-1+\frac{2}{p}}_{p, q}(\mathbb {T}<^>2)$.
引用
收藏
页码:1651 / 1668
页数:18
相关论文
共 50 条