The two-dimensional stationary Navier-Stokes equations in toroidal Besov spaces

被引:1
|
作者
Tsurumi, Hiroyuki [1 ,2 ]
机构
[1] Waseda Univ, Fac Sci & Engn, Dept Math, Tokyo, Japan
[2] Waseda Univ, Fac Sci & Engn, Dept Math, Tokyo 1698555, Japan
关键词
ill-posedness; Navier-Stokes equations; stationary solutions; toroidal Besov spaces; well-posedness; ILL-POSEDNESS; WELL-POSEDNESS; MORREY SPACES; EXISTENCE; STEADY;
D O I
10.1002/mana.202000208
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the stationary Navier-Stokes equations in the two-dimensional torus T2$\mathbb {T}<^>2$. For any epsilon>0$\varepsilon >0$, we show the existence, uniqueness, and continuous dependence of solutions in homogeneous toroidal Besov spaces B?p+epsilon,q-1+2p(T2)$\dot{B}<^>{-1+\frac{2}{p}}_{p+\varepsilon , q}(\mathbb {T}<^>2)$ for given small external forces in B?p+epsilon,q-3+2p(T2)$\dot{B}<^>{-3+\frac{2}{p}}_{p+\varepsilon , q}(\mathbb {T}<^>2)$ when 1 <= p<2$1\le p <2$. These spaces become closer to the scaling invariant ones if the difference epsilon becomes smaller. This well-posedness is proved by using the embedding property and the para-product estimate in homogeneous Besov spaces. In addition, for the case (p,q)is an element of({2}x(2,infinity])?((2,infinity]x[1,infinity])$(p,q)\in (\lbrace 2\rbrace \times (2,\infty ])\cup ((2,\infty ]\times [1,\infty ])$, we can show the ill-posedness, even in the scaling invariant spaces. Actually in such cases of p and q, we can prove that ill-posedness by showing the discontinuity of a certain solution map from B?p,q-3+2p(T2)$\dot{B}<^>{-3+\frac{2}{p}}_{p ,q}(\mathbb {T}<^>2)$ to B?p,q-1+2p(T2)$\dot{B}<^>{-1+\frac{2}{p}}_{p, q}(\mathbb {T}<^>2)$.
引用
收藏
页码:1651 / 1668
页数:18
相关论文
共 50 条
  • [21] Navier-Stokes equations with external forces in Besov-Morrey spaces
    Guo, Boling
    Qin, Guoquan
    [J]. APPLICABLE ANALYSIS, 2021, 100 (12) : 2499 - 2525
  • [22] On the Ill-posedness for the Navier-Stokes Equations in the Weakest Besov Spaces
    Yu, Yanghai
    Li, Jinlu
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 2024, 90 (02):
  • [23] Homogenization of the two-dimensional evolutionary compressible Navier-Stokes equations
    Necasova, Sarka
    Oschmann, Florian
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2023, 62 (06)
  • [24] Maximum palinstrophy amplification in the two-dimensional Navier-Stokes equations
    Ayala, Diego
    Doering, Charles R.
    Simon, Thilo M.
    [J]. JOURNAL OF FLUID MECHANICS, 2018, 837 : 839 - 857
  • [25] On the two-dimensional Navier-Stokes equations with the free boundary condition
    Indiana Univ, Bloomington, United States
    [J]. Appl Math Optim, 1 (1-19):
  • [26] Optimal control for two-dimensional stochastic Navier-Stokes equations
    Cutland, Nigel J.
    Grzesiak, Katarzyna
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 2007, 55 (01): : 61 - 91
  • [27] THE FON METHOD FOR THE STEADY TWO-DIMENSIONAL NAVIER-STOKES EQUATIONS
    WALTER, KT
    LARSEN, PS
    [J]. COMPUTERS & FLUIDS, 1981, 9 (03) : 365 - 376
  • [28] On the two-dimensional Navier-Stokes equations in stream function form
    City Univ of Hong Kong, Kowloon, Hong Kong
    [J]. J Math Anal Appl, 1 (1-31):
  • [29] Pseudospectral solution of the two-dimensional Navier-Stokes equations in a disk
    Torres, DJ
    Coutsias, EA
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 21 (01): : 378 - 403
  • [30] On the two-dimensional Navier-Stokes equations in stream function form
    Guo, BY
    He, LP
    Mao, DK
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 205 (01) : 1 - 31