Carnot rectifiability of sub-Riemannian manifolds with constant tangent

被引:0
|
作者
Le Donne, Enrico [1 ,2 ]
Young, Robert [3 ]
机构
[1] Univ Fribourg, Dept Math, Chemin Musee 23, CH-1700 Fribourg, Switzerland
[2] Univ Jyvaskyla, Dept Math & Stat, FI-40014 Jyvaskyla, Finland
[3] NYU, Courant Inst Math Sci, 251 Mercer St, New York, NY 10012 USA
基金
欧洲研究理事会; 芬兰科学院;
关键词
SPACES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that if M is a sub-Riemannian manifold and N is a Carnot group such that the nilpotentization of M at almost every point is isomorphic to N, then there are subsets of N of positive measure that embed into M by biLipschitz maps. Furthermore, M is countably N-rectifiable, i.e., all of M except for a null set can be covered by countably many such maps.
引用
收藏
页码:71 / 96
页数:26
相关论文
共 50 条