Carnot rectifiability of sub-Riemannian manifolds with constant tangent

被引:0
|
作者
Le Donne, Enrico [1 ,2 ]
Young, Robert [3 ]
机构
[1] Univ Fribourg, Dept Math, Chemin Musee 23, CH-1700 Fribourg, Switzerland
[2] Univ Jyvaskyla, Dept Math & Stat, FI-40014 Jyvaskyla, Finland
[3] NYU, Courant Inst Math Sci, 251 Mercer St, New York, NY 10012 USA
基金
欧洲研究理事会; 芬兰科学院;
关键词
SPACES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that if M is a sub-Riemannian manifold and N is a Carnot group such that the nilpotentization of M at almost every point is isomorphic to N, then there are subsets of N of positive measure that embed into M by biLipschitz maps. Furthermore, M is countably N-rectifiable, i.e., all of M except for a null set can be covered by countably many such maps.
引用
收藏
页码:71 / 96
页数:26
相关论文
共 50 条
  • [31] Sub-Riemannian metrics for quantum Heisenberg manifolds
    Weaver, N
    JOURNAL OF OPERATOR THEORY, 2000, 43 (02) : 223 - 242
  • [32] Integrability and nonintegrability of sub-Riemannian geodesic flows on Carnot groups
    Bizyaev, Ivan A.
    Borisov, Alexey V.
    Kilin, Alexander A.
    Mamaev, Ivan S.
    REGULAR & CHAOTIC DYNAMICS, 2016, 21 (06): : 759 - 774
  • [33] Universal Infinitesimal Hilbertianity of Sub-Riemannian Manifolds
    Le Donne, Enrico
    Lucic, Danka
    Pasqualetto, Enrico
    POTENTIAL ANALYSIS, 2023, 59 (01) : 349 - 374
  • [34] Geodesic Transformations of Distributions of Sub-Riemannian Manifolds
    Galaev S.V.
    Journal of Mathematical Sciences, 2023, 277 (5) : 722 - 726
  • [35] Intrinsic complements of equiregular sub-Riemannian manifolds
    Robert K. Hladky
    Geometriae Dedicata, 2014, 173 : 89 - 103
  • [36] Heat content asymptotics for sub-Riemannian manifolds
    Rizzi, Luca
    Rossi, Tommaso
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2021, 148 : 267 - 307
  • [37] SUB-RIEMANNIAN BALLS IN CR SASAKIAN MANIFOLDS
    Baudoin, Fabrice
    Bonnefont, Michel
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (11) : 3919 - 3924
  • [38] A CANONICAL CONNECTION ON SUB-RIEMANNIAN CONTACT MANIFOLDS
    Eastwood, Michael
    Neusser, Katharina
    ARCHIVUM MATHEMATICUM, 2016, 52 (05): : 277 - 289
  • [39] Polynomial Sub-Riemannian Differentiability on Carnot–Carathéodory Spaces
    M. B. Karmanova
    Siberian Mathematical Journal, 2018, 59 : 860 - 869
  • [40] On isotropic sub-Riemannian contact manifolds.
    Mansouri, AR
    COMPTES RENDUS MATHEMATIQUE, 2004, 339 (01) : 39 - 42