Constant curvature models in sub-Riemannian geometry

被引:7
|
作者
Alekseevsky, D. [1 ,2 ]
Medvedev, A. [2 ,3 ]
Slovak, J. [2 ]
机构
[1] Inst Informat Transmiss Problems, Bolshoy Karetny Per 19, Moscow 127051, Russia
[2] Masaryk Univ, Dept Math & Stat, Kotlarska 2, CS-61137 Brno, Czech Republic
[3] SISSA, Via Bonomea 265, Trieste, Italy
关键词
Curvature; SubRiemannian geometry; Lie algebra cohomology; Constant curvature spaces;
D O I
10.1016/j.geomphys.2018.09.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Each sub-Riemannian geometry with bracket generating distribution enjoys a background structure determined by the distribution itself. At the same time, those geometries with constant sub-Riemannian symbols determine a unique Cartan connection leading to their principal invariants. We provide cohomological description of the structure of these curvature invariants in the cases where the background structure is one of the parabolic geometries. As an illustration, constant curvature models are discussed for certain sub-Riemannian geometries. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:241 / 256
页数:16
相关论文
共 50 条
  • [1] Constant mean curvature surfaces in sub-Riemannian geometry
    Hladky, Robert K.
    Pauls, Scott D.
    [J]. JOURNAL OF DIFFERENTIAL GEOMETRY, 2008, 79 (01) : 111 - 139
  • [2] Curvature in sub-Riemannian geometry
    Bejancu, Aurel
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (02)
  • [3] Sub-Riemannian Curvature in Contact Geometry
    Agrachev, Andrei
    Barilari, Davide
    Rizzi, Luca
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2017, 27 (01) : 366 - 408
  • [4] Sub-Riemannian Curvature in Contact Geometry
    Andrei Agrachev
    Davide Barilari
    Luca Rizzi
    [J]. The Journal of Geometric Analysis, 2017, 27 : 366 - 408
  • [5] CONNECTIONS AND CURVATURE IN SUB-RIEMANNIAN GEOMETRY
    Hladky, Robert K.
    [J]. HOUSTON JOURNAL OF MATHEMATICS, 2012, 38 (04): : 1107 - 1134
  • [6] CURVATURE AND THE EQUIVALENCE PROBLEM IN SUB-RIEMANNIAN GEOMETRY
    Grong, Erlend
    [J]. ARCHIVUM MATHEMATICUM, 2022, 58 (05): : 295 - 327
  • [7] The Sub-Riemannian Geometry of Screw Motions with Constant Pitch
    Hulett, Eduardo
    Moas, Ruth Paola
    Salvai, Marcos
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (12)
  • [8] The Sub-Riemannian Geometry of Screw Motions with Constant Pitch
    Eduardo Hulett
    Ruth Paola Moas
    Marcos Salvai
    [J]. The Journal of Geometric Analysis, 2023, 33
  • [9] Sub-Riemannian geometry
    Kupka, I
    [J]. ASTERISQUE, 1997, (241) : 351 - 380
  • [10] SUB-RIEMANNIAN GEOMETRY
    STRICHARTZ, RS
    [J]. JOURNAL OF DIFFERENTIAL GEOMETRY, 1986, 24 (02) : 221 - 263