Constant curvature models in sub-Riemannian geometry

被引:7
|
作者
Alekseevsky, D. [1 ,2 ]
Medvedev, A. [2 ,3 ]
Slovak, J. [2 ]
机构
[1] Inst Informat Transmiss Problems, Bolshoy Karetny Per 19, Moscow 127051, Russia
[2] Masaryk Univ, Dept Math & Stat, Kotlarska 2, CS-61137 Brno, Czech Republic
[3] SISSA, Via Bonomea 265, Trieste, Italy
关键词
Curvature; SubRiemannian geometry; Lie algebra cohomology; Constant curvature spaces;
D O I
10.1016/j.geomphys.2018.09.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Each sub-Riemannian geometry with bracket generating distribution enjoys a background structure determined by the distribution itself. At the same time, those geometries with constant sub-Riemannian symbols determine a unique Cartan connection leading to their principal invariants. We provide cohomological description of the structure of these curvature invariants in the cases where the background structure is one of the parabolic geometries. As an illustration, constant curvature models are discussed for certain sub-Riemannian geometries. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:241 / 256
页数:16
相关论文
共 50 条
  • [21] Characteristic Laplacian in Sub-Riemannian Geometry
    Daniel, Jeremy
    Ma, Xiaonan
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (24) : 13290 - 13323
  • [22] Sub-Riemannian geometry of parallelizable spheres
    Molina, Mauricio Godoy
    Markina, Irina
    [J]. REVISTA MATEMATICA IBEROAMERICANA, 2011, 27 (03) : 997 - 1022
  • [23] Foucault pendulum and sub-Riemannian geometry
    Anzaldo-Meneses, A.
    Monroy-Perez, F.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (08)
  • [24] NONHOLONOMIC SYSTEMS AND SUB-RIEMANNIAN GEOMETRY
    Calin, Ovidiu
    Chang, Der-Chen
    Yau, Stephen S. T.
    [J]. COMMUNICATIONS IN INFORMATION AND SYSTEMS, 2010, 10 (04) : 293 - 316
  • [25] Sub-Riemannian geometry and subelliptic PDEs
    Greiner, PC
    [J]. PARTIAL DIFFERENTIAL EQUATIONS AND MATHEMATICAL PHYSICS: IN MEMORY OF JEAN LERAY, 2003, 52 : 105 - 110
  • [26] Branching Geodesics in Sub-Riemannian Geometry
    Mietton, Thomas
    Rizzi, Luca
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2020, 30 (04) : 1139 - 1151
  • [27] Branching Geodesics in Sub-Riemannian Geometry
    Thomas Mietton
    Luca Rizzi
    [J]. Geometric and Functional Analysis, 2020, 30 : 1139 - 1151
  • [28] The tangent space in sub-riemannian geometry
    Bellaïche A.
    [J]. Journal of Mathematical Sciences, 1997, 83 (4) : 461 - 476
  • [29] On the Hausdorff volume in sub-Riemannian geometry
    Agrachev, Andrei
    Barilari, Davide
    Boscain, Ugo
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2012, 43 (3-4) : 355 - 388
  • [30] On the Hausdorff volume in sub-Riemannian geometry
    Andrei Agrachev
    Davide Barilari
    Ugo Boscain
    [J]. Calculus of Variations and Partial Differential Equations, 2012, 43 : 355 - 388