NON-MONOGENITY OF CERTAIN OCTIC NUMBER FIELDS DEFINED BY TRINOMIALS

被引:2
|
作者
JAKHAR, A. N. U. J. [1 ]
KAUR, S. U. M. A. N. D. E. E. P. [2 ]
KUMAR, S. U. R. E. N. D. E. R. [1 ]
机构
[1] Indian Inst Technol IIT Bhilai, Dept Math, GEC Campus, Raipur 492015, Madhya Pradesh, India
[2] Panjab Univ Chandigarh, Dept Math, Chandigarh 160014, India
关键词
monogenity; theorem of Ore; prime ideal factorization; INTEGRAL BASES; INDEX;
D O I
10.4064/cm8799-3-2022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K = Q (theta) be an algebraic number field with theta a root of an irreducible polynomial f (x) = x(8) + ax(m) + b is an element of Z[x] and 1 <= m <= 7. We study the monogenity of K. Precisely, we give some explicit conditions on a, b for which Kappa is non-monogenic. As an application of our results, we provide some classes of algebraic number fields which are non-monogenic. Finally, we illustrate our results through examples.
引用
下载
收藏
页码:145 / 152
页数:8
相关论文
共 50 条
  • [21] Integral bases and relative monogenity of pure octic fields
    Hameed, Abdul
    Nakahara, Toru
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2015, 58 (04): : 419 - 433
  • [22] On monogenity of certain pure number fields defined by x2u.3v - m
    El Fadil, Lhoussain
    Najim, Ahmed
    ACTA SCIENTIARUM MATHEMATICARUM, 2022, 88 (3-4): : 581 - 594
  • [23] On Index Divisors and Monogenity of Certain Sextic Number Fields Defined by x6+ax5+b
    El Fadil, Lhoussain
    Kchit, Omar
    VIETNAM JOURNAL OF MATHEMATICS, 2024,
  • [24] On Monogenity of Certain Pure Number Fields Defined by x2r•7s - m
    El Fadil, Lhoussain
    Kchit, Omar
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2023, 41
  • [25] On index divisors and monogenity of certain septic number fields defined by x7 + ax3 + b
    El Fadil, Lhoussain
    Kchit, Omar
    COMMUNICATIONS IN ALGEBRA, 2023, 51 (06) : 2349 - 2363
  • [26] On common index divisors and monogenity of certain number fields defined by x5 +ax2 + b
    El Fadil, Lhoussain
    COMMUNICATIONS IN ALGEBRA, 2022, 50 (07) : 3102 - 3112
  • [27] Pure quintic fields defined by trinomials
    Spearman, BK
    Williams, KS
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2000, 30 (01) : 371 - 391
  • [28] ON NONMONOGENIC NUMBER FIELDS DEFINED BY TRINOMIALS OF TYPE xn plus axm plus b
    Yakkou, Hamid Ben
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2023, 53 (03) : 685 - 699
  • [29] Trinomials defining quintic number fields
    Patsolic, Jesse
    Rouse, Jeremy
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2017, 13 (07) : 1881 - 1894
  • [30] On certain octic biquartic fields related to a problem of Hasse
    Mamoona Sultan
    Toru Nakahara
    Monatshefte für Mathematik, 2015, 176 : 153 - 162