Pure quintic fields defined by trinomials

被引:1
|
作者
Spearman, BK [1 ]
Williams, KS
机构
[1] Okanagan Univ Coll, Dept Math & Stat, Kelowna, BC V1V 1V7, Canada
[2] Carleton Univ, Sch Math & Stat, Ottawa, ON K1S 5B2, Canada
关键词
pure quintic fields; solvable quintic trinomials;
D O I
10.1216/rmjm/1022008998
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Pure quintic fields which can be defined by a trinomial X-5 + aX + b or X-5 + aX(2) + b, where a and b are nonzero rational numbers, are characterized. Using this characterization it is shown that the only pure quintic field Q(p(1/5)) (p a prime) which can be defined by a trinomial is Q(2(1/5)) = Q(theta), where theta is the unique real root of x(5) + 100x(2) + 1000 = 0.
引用
收藏
页码:371 / 391
页数:21
相关论文
共 50 条
  • [1] Trinomials defining quintic number fields
    Patsolic, Jesse
    Rouse, Jeremy
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2017, 13 (07) : 1881 - 1894
  • [2] Nonmonogenity of number fields defined by trinomials
    Jakhar, Anuj
    [J]. NEW YORK JOURNAL OF MATHEMATICS, 2022, 28 : 650 - 658
  • [3] ON MONOGENITY OF CERTAIN NUMBER FIELDS DEFINED BY TRINOMIALS
    Yakkou, Hamid Ben
    El Fadil, Lhoussain
    [J]. FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2022, 67 (02) : 199 - 221
  • [4] DISCRIMINANTS OF NUMBER-FIELDS DEFINED BY TRINOMIALS
    LLORENTE, P
    NART, E
    VILA, N
    [J]. ACTA ARITHMETICA, 1984, 43 (04) : 367 - 373
  • [5] ON INDEX AND MONOGENITY OF CERTAIN NUMBER FIELDS DEFINED BY TRINOMIALS
    El Fadil, Lhoussain
    [J]. MATHEMATICA SLOVACA, 2023, 73 (04) : 861 - 870
  • [6] Class numbers of pure quintic fields
    Kobayashi, Hirotomo
    [J]. JOURNAL OF NUMBER THEORY, 2016, 160 : 463 - 477
  • [7] NON-MONOGENITY OF CERTAIN OCTIC NUMBER FIELDS DEFINED BY TRINOMIALS
    JAKHAR, A. N. U. J.
    KAUR, S. U. M. A. N. D. E. E. P.
    KUMAR, S. U. R. E. N. D. E. R.
    [J]. COLLOQUIUM MATHEMATICUM, 2023, 171 (01) : 145 - 152
  • [8] The p-Rank of Tame Kernels of Pure Quintic Fields
    Li, Yuanyuan
    Zhou, Haiyan
    Deng, Fei
    Wu, Xia
    [J]. ALGEBRA COLLOQUIUM, 2018, 25 (02) : 277 - 284
  • [9] COEFFICIENT FIELDS OF TRINOMIALS
    KASTEN, V
    SCHMIEDER, G
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1980, 171 (03) : 269 - 284
  • [10] ON NONMONOGENIC NUMBER FIELDS DEFINED BY TRINOMIALS OF TYPE xn plus axm plus b
    Yakkou, Hamid Ben
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2023, 53 (03) : 685 - 699