ON MONOGENITY OF CERTAIN NUMBER FIELDS DEFINED BY TRINOMIALS

被引:5
|
作者
Yakkou, Hamid Ben [1 ]
El Fadil, Lhoussain [1 ]
机构
[1] Sidi Mohamed Ben Abdellah Univ, Fac Sci Dhar El Mahraz, POB 1796, Atlas Fes, Morocco
关键词
power integral bases; theorem of Ore; prime ideal factorization; common index divisor; INDEX FORM EQUATIONS; POWER INTEGRAL BASES; POLYGONS; FAMILY;
D O I
10.7169/facm/1987
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K = Q(theta) be a number field generated by a complex root theta of a monic irreducible trinomial F(x) = xn + ax + b is an element of Z[x]. There is an extensive literature on monogenity of number fields defined by trinomials. For example, Gaal studied the multi-monogenity of sextic number fields defined by trinomials. Jhorar and Khanduja provide some explicit conditions on a, b and n for (1, theta, . . . , theta n-1) to be a power integral basis in K. But, if theta does not generate a power integral basis of ZK, then Jhorar's and Khanduja's results cannot answer the monogenity of K. In this paper, based on Newton polygon techniques, we deal with the problem of non-monogenity of K. More precisely, when theta does not generate a power integral basis of ZK, we give sufficient conditions on n, a and b for K to be not monogenic. For n is an element of {5, 6, 3r, 2k center dot 3r, 2s center dot 3k + 1}, we give explicitly some infinite families of these number fields that are not monogenic. Finally, we illustrate our results by some computational examples.
引用
收藏
页码:199 / 221
页数:23
相关论文
共 50 条
  • [1] ON INDEX AND MONOGENITY OF CERTAIN NUMBER FIELDS DEFINED BY TRINOMIALS
    El Fadil, Lhoussain
    [J]. MATHEMATICA SLOVACA, 2023, 73 (04) : 861 - 870
  • [2] NON-MONOGENITY OF CERTAIN OCTIC NUMBER FIELDS DEFINED BY TRINOMIALS
    JAKHAR, A. N. U. J.
    KAUR, S. U. M. A. N. D. E. E. P.
    KUMAR, S. U. R. E. N. D. E. R.
    [J]. COLLOQUIUM MATHEMATICUM, 2023, 171 (01) : 145 - 152
  • [3] On non monogenity of certain number fields defined by trinomials x6 + ax3 + b
    El Fadil, Lhoussain
    [J]. JOURNAL OF NUMBER THEORY, 2022, 239 : 489 - 500
  • [4] On common index divisor and monogenity of certain number fields defined by trinomials x6 + ax plus b
    El Fadil, Lhoussain
    [J]. QUAESTIONES MATHEMATICAE, 2023, 46 (08) : 1609 - 1627
  • [5] On non-monogenity of the number fields defined by certain quadrinomials
    Jakhar, Anuj
    Kaur, Sumandeep
    Kumar, Surender
    [J]. COMMUNICATIONS IN ALGEBRA, 2023, 51 (06) : 2448 - 2459
  • [6] On monogenity of certain pure number fields defined by xpr - m
    Ben Yakkou, Hamid
    El Fadil, Lhoussain
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2021, 17 (10) : 2235 - 2242
  • [7] On Common Index Divisors and Monogenity of Certain Number Fields Defined by x 5
    Boughaleb, Omar
    Saber, Karim
    [J]. BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2024, 42 : 1 - 9
  • [8] On Monogenity of Certain Pure Number Fields Defined by x60 - m
    El Fadil, Lhoussain
    Choulli, Hanan
    Kchit, Omar
    [J]. ACTA MATHEMATICA VIETNAMICA, 2023, 48 (02) : 283 - 293
  • [9] On Monogenity of Certain Pure Number Fields Defined by x60 − m
    Lhoussain El Fadil
    Hanan Choulli
    Omar Kchit
    [J]. Acta Mathematica Vietnamica, 2023, 48 : 283 - 293
  • [10] On monogenity of certain pure number fields defined by x20 - m
    El Fadil, Lhoussain
    [J]. SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2022, 16 (02): : 1063 - 1071