Trinomials defining quintic number fields

被引:1
|
作者
Patsolic, Jesse [1 ]
Rouse, Jeremy [2 ]
机构
[1] Johns Hopkins Univ, Ctr Imaging Sci, Baltimore, MD 21218 USA
[2] Wake Forest Univ, Dept Math & Stat, Winston Salem, NC 27109 USA
关键词
Trinomials; elliptic curves; number fields; Chabauty's method; ELLIPTIC-CURVES; POLYNOMIALS; POINTS;
D O I
10.1142/S1793042117501032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a quintic number field K/Q, we study the set of irreducible trinomials, polynomials of the form x(5) + ax + b, that have a root in K. We show that there is a genus 4 curve C-K whose rational points are in bijection with such trinomials. This curve C-K maps to an elliptic curve defined over a number field, and using this map, we are able (in some cases) to determine all the rational points on CK using elliptic curve Chabauty.
引用
收藏
页码:1881 / 1894
页数:14
相关论文
共 50 条
  • [1] Pure quintic fields defined by trinomials
    Spearman, BK
    Williams, KS
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2000, 30 (01) : 371 - 391
  • [2] On the number of quintic fields
    Kable, AC
    Yukie, A
    [J]. INVENTIONES MATHEMATICAE, 2005, 160 (02) : 217 - 259
  • [3] On the number of quintic fields
    Anthony C. Kable
    Akihiko Yukie
    [J]. Inventiones mathematicae, 2005, 160 : 217 - 259
  • [4] Nonmonogenity of number fields defined by trinomials
    Jakhar, Anuj
    [J]. NEW YORK JOURNAL OF MATHEMATICS, 2022, 28 : 650 - 658
  • [5] ON MONOGENITY OF CERTAIN NUMBER FIELDS DEFINED BY TRINOMIALS
    Yakkou, Hamid Ben
    El Fadil, Lhoussain
    [J]. FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2022, 67 (02) : 199 - 221
  • [6] DISCRIMINANTS OF NUMBER-FIELDS DEFINED BY TRINOMIALS
    LLORENTE, P
    NART, E
    VILA, N
    [J]. ACTA ARITHMETICA, 1984, 43 (04) : 367 - 373
  • [7] A TABLE OF QUINTIC NUMBER-FIELDS
    SCHWARZ, A
    POHST, M
    DIAZ, FDY
    [J]. MATHEMATICS OF COMPUTATION, 1994, 63 (207) : 361 - 376
  • [8] Estimating the number of roots of trinomials over finite fields
    Kelley, Zander
    Owen, Sean W.
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 2017, 79 : 108 - 118
  • [9] ON INDEX AND MONOGENITY OF CERTAIN NUMBER FIELDS DEFINED BY TRINOMIALS
    El Fadil, Lhoussain
    [J]. MATHEMATICA SLOVACA, 2023, 73 (04) : 861 - 870
  • [10] Counting quintic fields with genus number one
    McGown, Kevin J.
    Thorne, Frank
    Tucker, Amanda
    [J]. MATHEMATICAL RESEARCH LETTERS, 2023, 30 (02) : 577 - 588