Deep learning-based polygenic risk analysis for Alzheimer's disease prediction

被引:18
|
作者
Zhou, Xiaopu [1 ,2 ,3 ]
Chen, Yu [1 ,3 ,4 ]
Ip, Fanny C. F. [1 ,2 ,3 ]
Jiang, Yuanbing [1 ,2 ]
Cao, Han [1 ]
Lv, Ge [5 ]
Zhong, Huan [1 ,2 ]
Chen, Jiahang [5 ]
Ye, Tao [1 ,3 ,4 ]
Chen, Yuewen [1 ,3 ,4 ]
Zhang, Yulin [3 ]
Ma, Shuangshuang [3 ]
Lo, Ronnie M. N. [1 ]
Tong, Estella P. S. [1 ]
Mok, Vincent C. T. [6 ]
Kwok, Timothy C. Y. [7 ]
Guo, Qihao [8 ]
Mok, Kin Y. [1 ,2 ,9 ,10 ]
Shoai, Maryam [9 ,10 ]
Hardy, John [2 ,9 ,10 ,11 ]
Chen, Lei [5 ]
Fu, Amy K. Y. [1 ,2 ,3 ]
Ip, Nancy Y. [1 ,2 ,3 ]
机构
[1] Hong Kong Univ Sci & Technol, Mol Neurosci Ctr, Div Life Sci, State Key Lab Mol Neurosci,Kowloon, Clear Water Bay, Hong Kong, Peoples R China
[2] Hong Kong Sci Pk, Hong Kong Ctr Neurodegenerat Dis, Hong Kong, Peoples R China
[3] HKUST, Shenzhen Hong Kong Inst Brain Sci, Guangdong Prov Key Lab Brain Sci Dis & Drug Dev, Shenzhen Res Inst, Shenzhen 518057, Guangdong, Peoples R China
[4] Chinese Acad Sci, Brain Cognit & Brain Dis Inst, Shenzhen Inst Adv Technol, Key Lab Brain Connectome & Manipulat,Shenzhen Hon, Shenzhen 518055, Guangdong, Peoples R China
[5] Hong Kong Univ Sci & Technol, Dept Comp Sci & Engn, Kowloon, Clear Water Bay, Hong Kong, Peoples R China
[6] Chinese Univ Hong Kong, Lui Che Woo Inst Innovat Med, Gerald Choa Neurosci Ctr, Therese Pei Fong Chow Res Ctr Prevent Dementia,Di, Hong Kong, Peoples R China
[7] Chinese Univ Hong Kong, Therese Pei Fong Chow Res Ctr Prevent Dementia, Dept Med & Therapeut, Div Geriatr,Shatin, Hong Kong, Peoples R China
[8] Shanghai Jiao Tong Univ, Affiliated Peoples Hosp 6, Dept Gerontol, Shanghai 200233, Peoples R China
[9] UCL Queen Sq Inst Neurol, Dept Neurodegenerat Dis, London, England
[10] UCL, UK Dementia Res Inst, London, England
[11] Hong Kong Univ Sci & Technol, Jockey Club Inst Adv Study, Kowloon, Clear Water Bay, Hong Kong, Peoples R China
来源
COMMUNICATIONS MEDICINE | 2023年 / 3卷 / 01期
基金
加拿大健康研究院; 国家重点研发计划;
关键词
GENOME BROWSER; SCORE ANALYSIS; VARIANTS; LOCI; METAANALYSIS; ASSOCIATION; EPISTASIS; DEMENTIA; MEDICINE; DESIGN;
D O I
10.1038/s43856-023-00269-x
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Zhou et al. utilise deep learning to improve polygenic risk analysis for Alzheimer's disease. Their computational approach outperforms existing statistical methods and helps to identify potential biological mechanisms of Alzheimer's disease risk. Plain language summaryPolygenic diseases, such as Alzheimer's disease (AD), are those caused by the interplay between multiple genetic risk factors. Statistical models can be used to predict disease risk based on a person's genetic profile. However, there are limitations to existing methods, while emerging methods such as deep learning may improve risk prediction. Deep learning involves computer-based software learning from patterns in data to perform a certain task, e.g. predict disease risk. Here, we test whether deep learning models can help to predict AD risk. Our models not only outperformed existing methods in modeling AD risk, they also allow us to estimate an individual's risk of AD and determine the biological processes that may be involved in AD. With further testing and optimization, deep learning may be a useful tool to help accurately predict risk of AD and other diseases. BackgroundThe polygenic nature of Alzheimer's disease (AD) suggests that multiple variants jointly contribute to disease susceptibility. As an individual's genetic variants are constant throughout life, evaluating the combined effects of multiple disease-associated genetic risks enables reliable AD risk prediction. Because of the complexity of genomic data, current statistical analyses cannot comprehensively capture the polygenic risk of AD, resulting in unsatisfactory disease risk prediction. However, deep learning methods, which capture nonlinearity within high-dimensional genomic data, may enable more accurate disease risk prediction and improve our understanding of AD etiology. Accordingly, we developed deep learning neural network models for modeling AD polygenic risk.MethodsWe constructed neural network models to model AD polygenic risk and compared them with the widely used weighted polygenic risk score and lasso models. We conducted robust linear regression analysis to investigate the relationship between the AD polygenic risk derived from deep learning methods and AD endophenotypes (i.e., plasma biomarkers and individual cognitive performance). We stratified individuals by applying unsupervised clustering to the outputs from the hidden layers of the neural network model.ResultsThe deep learning models outperform other statistical models for modeling AD risk. Moreover, the polygenic risk derived from the deep learning models enables the identification of disease-associated biological pathways and the stratification of individuals according to distinct pathological mechanisms.ConclusionOur results suggest that deep learning methods are effective for modeling the genetic risks of AD and other diseases, classifying disease risks, and uncovering disease mechanisms.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Explainable machine learning aggregates polygenic risk scores and electronic health records for Alzheimer’s disease prediction
    Xiaoyi Raymond Gao
    Marion Chiariglione
    Ke Qin
    Karen Nuytemans
    Douglas W. Scharre
    Yi-Ju Li
    Eden R. Martin
    Scientific Reports, 13 (1)
  • [32] Explainable machine learning aggregates polygenic risk scores and electronic health records for Alzheimer's disease prediction
    Gao, Xiaoyi Raymond
    Chiariglione, Marion
    Qin, Ke
    Nuytemans, Karen
    Scharre, Douglas W.
    Li, Yi-Ju
    Martin, Eden R.
    SCIENTIFIC REPORTS, 2023, 13 (01):
  • [33] An Interpretable Machine Learning Model with Deep Learning-Based Imaging Biomarkers for Diagnosis of Alzheimer's Disease
    Kang, Wenjie
    Li, Bo
    Papma, Janne M.
    Jiskoot, Lize C.
    De Deyn, Peter Paul
    Biessels, Geert Jan
    Claassen, Jurgen A. H. R.
    Middelkoop, Huub A. M.
    van der Flier, Wiesje M.
    Ramakers, Inez H. G. B.
    Klein, Stefan
    Bron, Esther E.
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023 WORKSHOPS, 2023, 14393 : 69 - 78
  • [34] Deep Learning for Alzheimer's Disease Prediction: A Comprehensive Review
    Malik, Isra
    Iqbal, Ahmed
    Gu, Yeong Hyeon
    Al-antari, Mugahed A.
    DIAGNOSTICS, 2024, 14 (12)
  • [35] Transfer Learning-Based Ensemble of Deep Neural Architectures for Alzheimer's and Parkinson's Disease Classification
    Vimbi, Viswan
    Shaffi, Noushath
    Mahmud, Mufti
    Subramanian, Karthikeyan
    Hajamohideen, Faizal
    APPLIED INTELLIGENCE AND INFORMATICS, AII 2023, 2024, 2065 : 186 - 204
  • [36] Deep Learning-Based Classification and Voxel-Based Visualization of Frontotemporal Dementia and Alzheimer's Disease
    Hu, Jingjing
    Qing, Zhao
    Liu, Renyuan
    Zhang, Xin
    Lv, Pin
    Wang, Maoxue
    Wang, Yang
    He, Kelei
    Gao, Yang
    Zhang, Bing
    FRONTIERS IN NEUROSCIENCE, 2021, 14
  • [37] Deep Learning-Based Risk Analysis and Prediction During the Implementation of Carbon Neutrality Goals
    Long, Huizhen
    Li, Meng
    Dong, Zhen
    Meng, Yuan
    Zhang, Fengrui
    JOURNAL OF ORGANIZATIONAL AND END USER COMPUTING, 2025, 37 (01)
  • [38] Deep Learning-Based Magnetic Resonance Image Segmentation and Classification for Alzheimer's Disease Diagnosis
    Manochandar, T.
    Diderot, P. Kumaraguru
    INTERNATIONAL JOURNAL OF IMAGE AND GRAPHICS, 2023,
  • [39] Deep learning-based drug screening for the discovery of potential therapeutic agents for Alzheimer's disease
    Wu, Tong
    Lin, Ruimei
    Cui, Pengdi
    Yong, Jie
    Yu, Heshui
    Li, Zheng
    JOURNAL OF PHARMACEUTICAL ANALYSIS, 2024, 14 (10)
  • [40] Deep Learning-Based Feature Extraction with MRI Data in Neuroimaging Genetics for Alzheimer's Disease
    Chakraborty, Dipnil
    Zhuang, Zhong
    Xue, Haoran
    Fiecas, Mark B.
    Shen, Xiatong
    Pan, Wei
    GENES, 2023, 14 (03)