Transfer Learning-Based Ensemble of Deep Neural Architectures for Alzheimer's and Parkinson's Disease Classification

被引:0
|
作者
Vimbi, Viswan [1 ]
Shaffi, Noushath [5 ]
Mahmud, Mufti [2 ,3 ,4 ]
Subramanian, Karthikeyan [1 ]
Hajamohideen, Faizal [1 ]
机构
[1] Univ Technol & Appl Sci Sohar, Dept Informat Technol, Sohar 311, Oman
[2] Nottingham Trent Univ, Dept Comp Sci, Nottingham NG11 8NS, England
[3] Nottingham Trent Univ, CIRC, Nottingham NG11 8NS, England
[4] Nottingham Trent Univ, MTIF, Nottingham NG11 8NS, England
[5] Sultan Qaboos Univ, Coll Sci, Dept Comp Sci, POB 36, Muscat 123, Oman
关键词
Transfer Learning; Deep Learning; Alzheimer's Disease; Parkinson Disease; Ensemble;
D O I
10.1007/978-3-031-68639-9_12
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The use of transfer learning in medical imaging has shown promising results in various applications, including disease classification and segmentation. Early detection of neurological diseases like Alzheimer's (AD) and Parkinsons (PD) is the need of the hour. This research experiments MRI datasets pertaining to AD and PD using transfer architecture of neural networks for disease classification. We used three popular datasets, namely ADNI, OASIS, and NTUA, and evaluated seven state-of-the-art transfer learning algorithms for classification. The experiments demonstrates the effectiveness of transfer learning in Alzheimer's and Parkinson's disease classification by achieving high accuracy and AUC scores. While the study highlights the top performing neural network models like InceptionV3 and InceptionResNetV2 for both OASIS and ADNI, it also showcase the high performances of transfer architectures like ResNet50 and EfficientNetB0 from the NTUA dataset. Additionally, we presented an ensemble of these algorithms. Relevant codes can be found at https://github.com/snoushath/AD- PD- TransferLearning.git
引用
收藏
页码:186 / 204
页数:19
相关论文
共 50 条
  • [1] Deep Learning-Based Segmentation in Classification of Alzheimer's Disease
    Buvaneswari, P. R.
    Gayathri, R.
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2021, 46 (06) : 5373 - 5383
  • [2] Deep Learning-Based Segmentation in Classification of Alzheimer’s Disease
    P. R. Buvaneswari
    R. Gayathri
    Arabian Journal for Science and Engineering, 2021, 46 : 5373 - 5383
  • [3] Deep ensemble learning for Alzheimer's disease classification
    An, Ning
    Ding, Huitong
    Yang, Jiaoyun
    Au, Rhoda
    Ang, Ting F. A.
    JOURNAL OF BIOMEDICAL INFORMATICS, 2020, 105
  • [4] Classification of Alzheimer's Disease Using Ensemble of Deep Neural Networks Trained Through Transfer Learning
    Tanveer, M.
    Rashid, A. H.
    Ganaie, M. A.
    Reza, M.
    Razzak, Imran
    Hua, Kai-Lung
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2022, 26 (04) : 1453 - 1463
  • [5] A hybrid deep transfer learning-based approach for Parkinson's disease classification in surface electromyography signals
    Rezaee, Khosro
    Savarkar, Somayeh
    Yu, Xiaofeng
    Zhang, Jingyu
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 71
  • [6] Deep transfer learning-based fully automated detection and classification of Alzheimer's disease on brain MRI
    Ghaffari, Hamed
    Tavakoli, Hassan
    Jahromi, Gila Pirzad
    BRITISH JOURNAL OF RADIOLOGY, 2022, 95 (1136):
  • [7] Deep Learning-Based Diagnosis of Alzheimer's Disease
    Saleem, Tausifa Jan
    Zahra, Syed Rameem
    Wu, Fan
    Alwakeel, Ahmed
    Alwakeel, Mohammed
    Jeribi, Fathe
    Hijji, Mohammad
    JOURNAL OF PERSONALIZED MEDICINE, 2022, 12 (05):
  • [8] Deep Learning-Based Parkinson's Disease Classification Using Vocal Feature Sets
    Gunduz, Hakan
    IEEE ACCESS, 2019, 7 : 115540 - 115551
  • [9] Deep learning-based identification of genetic variants: application to Alzheimer's disease classification
    Jo, Taeho
    Nho, Kwangsik
    Bice, Paula
    Saykin, Andrew J.
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (02)
  • [10] Alzheimer's Disease Detection and Classification using Transfer Learning Technique and Ensemble on Convolutional Neural Networks
    Sadat, Sayed Us
    Shomee, Homaira Huda
    Awwal, Alvina
    Amin, Sadia Nur
    Reza, Md Tanzim
    Parvez, Mohammad Zavid
    2021 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2021, : 1478 - 1481