Deep learning-based polygenic risk analysis for Alzheimer's disease prediction

被引:18
|
作者
Zhou, Xiaopu [1 ,2 ,3 ]
Chen, Yu [1 ,3 ,4 ]
Ip, Fanny C. F. [1 ,2 ,3 ]
Jiang, Yuanbing [1 ,2 ]
Cao, Han [1 ]
Lv, Ge [5 ]
Zhong, Huan [1 ,2 ]
Chen, Jiahang [5 ]
Ye, Tao [1 ,3 ,4 ]
Chen, Yuewen [1 ,3 ,4 ]
Zhang, Yulin [3 ]
Ma, Shuangshuang [3 ]
Lo, Ronnie M. N. [1 ]
Tong, Estella P. S. [1 ]
Mok, Vincent C. T. [6 ]
Kwok, Timothy C. Y. [7 ]
Guo, Qihao [8 ]
Mok, Kin Y. [1 ,2 ,9 ,10 ]
Shoai, Maryam [9 ,10 ]
Hardy, John [2 ,9 ,10 ,11 ]
Chen, Lei [5 ]
Fu, Amy K. Y. [1 ,2 ,3 ]
Ip, Nancy Y. [1 ,2 ,3 ]
机构
[1] Hong Kong Univ Sci & Technol, Mol Neurosci Ctr, Div Life Sci, State Key Lab Mol Neurosci,Kowloon, Clear Water Bay, Hong Kong, Peoples R China
[2] Hong Kong Sci Pk, Hong Kong Ctr Neurodegenerat Dis, Hong Kong, Peoples R China
[3] HKUST, Shenzhen Hong Kong Inst Brain Sci, Guangdong Prov Key Lab Brain Sci Dis & Drug Dev, Shenzhen Res Inst, Shenzhen 518057, Guangdong, Peoples R China
[4] Chinese Acad Sci, Brain Cognit & Brain Dis Inst, Shenzhen Inst Adv Technol, Key Lab Brain Connectome & Manipulat,Shenzhen Hon, Shenzhen 518055, Guangdong, Peoples R China
[5] Hong Kong Univ Sci & Technol, Dept Comp Sci & Engn, Kowloon, Clear Water Bay, Hong Kong, Peoples R China
[6] Chinese Univ Hong Kong, Lui Che Woo Inst Innovat Med, Gerald Choa Neurosci Ctr, Therese Pei Fong Chow Res Ctr Prevent Dementia,Di, Hong Kong, Peoples R China
[7] Chinese Univ Hong Kong, Therese Pei Fong Chow Res Ctr Prevent Dementia, Dept Med & Therapeut, Div Geriatr,Shatin, Hong Kong, Peoples R China
[8] Shanghai Jiao Tong Univ, Affiliated Peoples Hosp 6, Dept Gerontol, Shanghai 200233, Peoples R China
[9] UCL Queen Sq Inst Neurol, Dept Neurodegenerat Dis, London, England
[10] UCL, UK Dementia Res Inst, London, England
[11] Hong Kong Univ Sci & Technol, Jockey Club Inst Adv Study, Kowloon, Clear Water Bay, Hong Kong, Peoples R China
来源
COMMUNICATIONS MEDICINE | 2023年 / 3卷 / 01期
基金
加拿大健康研究院; 国家重点研发计划;
关键词
GENOME BROWSER; SCORE ANALYSIS; VARIANTS; LOCI; METAANALYSIS; ASSOCIATION; EPISTASIS; DEMENTIA; MEDICINE; DESIGN;
D O I
10.1038/s43856-023-00269-x
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Zhou et al. utilise deep learning to improve polygenic risk analysis for Alzheimer's disease. Their computational approach outperforms existing statistical methods and helps to identify potential biological mechanisms of Alzheimer's disease risk. Plain language summaryPolygenic diseases, such as Alzheimer's disease (AD), are those caused by the interplay between multiple genetic risk factors. Statistical models can be used to predict disease risk based on a person's genetic profile. However, there are limitations to existing methods, while emerging methods such as deep learning may improve risk prediction. Deep learning involves computer-based software learning from patterns in data to perform a certain task, e.g. predict disease risk. Here, we test whether deep learning models can help to predict AD risk. Our models not only outperformed existing methods in modeling AD risk, they also allow us to estimate an individual's risk of AD and determine the biological processes that may be involved in AD. With further testing and optimization, deep learning may be a useful tool to help accurately predict risk of AD and other diseases. BackgroundThe polygenic nature of Alzheimer's disease (AD) suggests that multiple variants jointly contribute to disease susceptibility. As an individual's genetic variants are constant throughout life, evaluating the combined effects of multiple disease-associated genetic risks enables reliable AD risk prediction. Because of the complexity of genomic data, current statistical analyses cannot comprehensively capture the polygenic risk of AD, resulting in unsatisfactory disease risk prediction. However, deep learning methods, which capture nonlinearity within high-dimensional genomic data, may enable more accurate disease risk prediction and improve our understanding of AD etiology. Accordingly, we developed deep learning neural network models for modeling AD polygenic risk.MethodsWe constructed neural network models to model AD polygenic risk and compared them with the widely used weighted polygenic risk score and lasso models. We conducted robust linear regression analysis to investigate the relationship between the AD polygenic risk derived from deep learning methods and AD endophenotypes (i.e., plasma biomarkers and individual cognitive performance). We stratified individuals by applying unsupervised clustering to the outputs from the hidden layers of the neural network model.ResultsThe deep learning models outperform other statistical models for modeling AD risk. Moreover, the polygenic risk derived from the deep learning models enables the identification of disease-associated biological pathways and the stratification of individuals according to distinct pathological mechanisms.ConclusionOur results suggest that deep learning methods are effective for modeling the genetic risks of AD and other diseases, classifying disease risks, and uncovering disease mechanisms.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Deep Learning-Based Magnetic Resonance Image Segmentation and Classification for Alzheimer's Disease Diagnosis
    Manochandar, T.
    Diderot, P. Kumaraguru
    INTERNATIONAL JOURNAL OF IMAGE AND GRAPHICS, 2023,
  • [42] Deep Learning-based Classification of MRI Images for Early Detection and Staging of Alzheimer's Disease
    Kumar, Parvatham Niranjan
    Maguluri, Lakshmana Phaneendra
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (05) : 451 - 459
  • [43] GenoRisk: A polygenic risk score for Alzheimer's disease
    Dickson, Samuel P.
    Hendrix, Suzanne B.
    Brown, Bruce L.
    Ridge, Perry G.
    Nicodemus-Johnson, Jessie
    Hardy, Marci L.
    McKeany, Allison M.
    Booth, Steven B.
    Fortna, Ryan R.
    Kauwe, John S. K.
    ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS, 2021, 7 (01)
  • [44] Polygenic Risk Scores in Familial Alzheimer's Disease
    Tosto, Giuseppe
    Bird, Thomas D.
    Bennet, David A.
    Boeve, Bradley F.
    Brickman, Adam M.
    Cruchaga, Carlos
    Faber, Kelley
    Foroud, Tatiana M.
    Farlow, Martin
    Goate, Alison M.
    Graff-Radford, Neil R.
    Lantigua, Rafael
    Manly, Jennifer
    Ottman, Ruth
    Rosenberg, Roger
    Schaid, Daniel J.
    Schupf, Nicole
    Stern, Yaakov
    Sweet, Robert A.
    Mayeux, Richard
    ANNALS OF NEUROLOGY, 2016, 80 : S182 - S182
  • [45] Polygenic risk of Alzheimer's disease in the Faroe Islands
    Johansen, Malan
    Joensen, Sofus
    Restorff, Marjun
    Stora, Tormodur
    Christy, Darren
    Gustavsson, Emil K.
    Bian, Jiang
    Guo, Yi
    Farrer, Matthew J.
    Petersen, Maria Skaalum
    EUROPEAN JOURNAL OF NEUROLOGY, 2022, 29 (08) : 2192 - 2200
  • [46] Genetic and polygenic risk score analysis for Alzheimer's disease in the Chinese population
    Zhou, Xiaopu
    Chen, Yu
    Ip, Fanny C. F.
    Lai, Nicole C. H.
    Li, Yolanda Y. T.
    Jiang, Yuanbing
    Zhong, Huan
    Chen, Yuewen
    Zhang, Yulin
    Ma, Shuangshuang
    Lo, Ronnie M. N.
    Cheung, Kit
    Tong, Estella P. S.
    Ko, Ho
    Shoai, Maryam
    Mok, Kin Y.
    Hardy, John
    Mok, Vincent C. T.
    Kwok, Timothy C. Y.
    Fu, Amy K. Y.
    Ip, Nancy Y.
    ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING, 2020, 12 (01)
  • [47] Analysis on the Channel Prediction Accuracy of Deep Learning-based Approach
    Son, Woo-Sung
    Han, Dong Seog
    3RD INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE IN INFORMATION AND COMMUNICATION (IEEE ICAIIC 2021), 2021, : 140 - 143
  • [48] Deep Learning-based Cryptocurrency Price Prediction: A Comparative Analysis
    Mazinani, Armin
    Davoli, Luca
    Ferrari, Gianluigi
    2023 5TH CONFERENCE ON BLOCKCHAIN RESEARCH & APPLICATIONS FOR INNOVATIVE NETWORKS AND SERVICES, BRAINS, 2023,
  • [49] Deep Learning-based Prediction of Traffic Accident Risk in Vehicular Networks
    Zhao, Haitao
    Zhang, Jun
    Li, Xiaoqing
    Wang, Qin
    Zhu, Hongbo
    2020 IEEE GLOBECOM WORKSHOPS (GC WKSHPS), 2020,
  • [50] Deep learning-based prediction of traffic accidents risk for Internet of vehicles
    Zhao, Haitao
    Li, Xiaoqing
    Cheng, Huiling
    Zhang, Jun
    Wang, Qin
    Zhu, Hongbo
    CHINA COMMUNICATIONS, 2022, 19 (02) : 214 - 224