Numerical Simulations on Thermocapillary Flow on Heated Sinusoidal Topography

被引:2
|
作者
Kim, Min Chan [1 ]
机构
[1] Jeju Natl Univ, Dept Chem Engn, Jeju 63243, South Korea
关键词
Thermocapillary flow; Maragoni instability; Sinusoidal topography; Numerical simulation; SURFACE-TENSION; CONVECTION; DRIVEN;
D O I
10.1007/s11814-024-00109-1
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The interaction between thermocapillary flow and substrate geometry is analyzed numerically. Taking surface tension into account, the momentum equation is derived and solved using a commercial FEM solver, COMSOL Multiphysics where the effects of surface tension and surface deflection can be easily incorporated into the momentum equation. In the case that the Marangoni number is close to its critical value, i.e., Ma approximate to Mac\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\text{Ma}}\approx {\text{Ma}}}_{c}$$\end{document}, the strong symmetric thermocapillary flow is observed when the wavelength of topography, lambda T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lambda }_{T}$$\end{document}, and the wavelength of instability motion, lambda\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda$$\end{document}, are nearly the same. This interesting phenomenon has been called flow-structure resonance. Through the numerical simulations, various flow modes, such as symmetric two-cell and four-cell modes, asymmetric two-cell mode, and oscillatory asymmetric two-cell mode are identified by changing the Marangoni number and wavelength of topography. It is clearly shown that for a certain lambda T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lambda }_{T}$$\end{document}-system, the transition from oscillatory mode to steady one is possible by relaxing the previous non-deformable surface condition due to high surface tension, i.e., Ca -> 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{Ca}}\to 0$$\end{document}, here Ca\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{Ca}}$$\end{document} is the capillary number. The present study reveals that the preferred flow mode is the complex function of the various parameters such as the Marangoni number, the Biot number, the wavelength of topography, and the capillary number.
引用
收藏
页码:411 / 424
页数:14
相关论文
共 50 条
  • [41] Thermocapillary structures in a heated liquid film
    Aktershev, S. P.
    Chinnov, E. A.
    JOINT 12TH INTERNATIONAL CONFERENCE: TWO-PHASE SYSTEMS FOR SPACE AND GROUND APPLICATIONS AND 2ND INTERNATIONAL SCHOOL OF YOUNG SCIENTISTS INTERFACIAL PHENOMENA AND HEAT TRANSFER, 2017, 925
  • [42] Diagnoses and numerical simulations of turbulence in the vicinity of coastal topography
    Miller, DK
    Walters, DL
    10TH CONFERENCE ON MOUNTAIN METEOROLOGY, 2002, : 382 - 385
  • [43] NUMERICAL SIMULATIONS OF A 2-DIMENSIONAL AIR-FLOW INSIDE A FLOOR-HEATED ROOM
    BRACONNIER, R
    REVUE GENERALE DE THERMIQUE, 1994, 33 (385): : 12 - 20
  • [44] Thermocapillary deformation of a locally heated liquid film moving under the action of a gas flow
    E. Ya. Gatapova
    O. A. Kabov
    I. V. Marchuk
    Technical Physics Letters, 2004, 30 : 418 - 421
  • [45] Pattern formation and transient thermocapillary flow in a rectangular side-heated open cavity
    Masato Sakurai
    Jens Leypoldt
    Hendrik C. Kuhlmann
    Hans J. Rath
    Akira Hirata
    Microgravity Science and Technology, 2002, 13
  • [46] Influence of thermocapillary flow induced by a heated substrate on atomization driven by surface acoustic waves
    Munoz, J.
    Arcos, J.
    Bautista, O.
    Mendez, F.
    PHYSICS OF FLUIDS, 2023, 35 (01)
  • [47] Thermocapillary deformation of a locally heated liquid film moving under the action of a gas flow
    Gatapova, EY
    Kabov, OA
    Marchuk, IV
    TECHNICAL PHYSICS LETTERS, 2004, 30 (05) : 418 - 421
  • [48] Effect of Substrate Microstructure on Thermocapillary Flow and Heat Transfer of Nanofluid Droplet on Heated Wall
    Jiang, Yanni
    Chi, Faxuan
    Chen, Qisheng
    Zhou, Xiaoming
    MICROGRAVITY SCIENCE AND TECHNOLOGY, 2021, 33 (03)
  • [49] Effect of Substrate Microstructure on Thermocapillary Flow and Heat Transfer of Nanofluid Droplet on Heated Wall
    Yanni Jiang
    Faxuan Chi
    Qisheng Chen
    Xiaoming Zhou
    Microgravity Science and Technology, 2021, 33
  • [50] Numerical Simulations of Two-Layer Flow past Topography. Part II: Lee Vortices
    Rotunno, Richard
    Bryan, George H.
    JOURNAL OF THE ATMOSPHERIC SCIENCES, 2020, 77 (03) : 965 - 980