Numerical Simulations on Thermocapillary Flow on Heated Sinusoidal Topography

被引:2
|
作者
Kim, Min Chan [1 ]
机构
[1] Jeju Natl Univ, Dept Chem Engn, Jeju 63243, South Korea
关键词
Thermocapillary flow; Maragoni instability; Sinusoidal topography; Numerical simulation; SURFACE-TENSION; CONVECTION; DRIVEN;
D O I
10.1007/s11814-024-00109-1
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The interaction between thermocapillary flow and substrate geometry is analyzed numerically. Taking surface tension into account, the momentum equation is derived and solved using a commercial FEM solver, COMSOL Multiphysics where the effects of surface tension and surface deflection can be easily incorporated into the momentum equation. In the case that the Marangoni number is close to its critical value, i.e., Ma approximate to Mac\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\text{Ma}}\approx {\text{Ma}}}_{c}$$\end{document}, the strong symmetric thermocapillary flow is observed when the wavelength of topography, lambda T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lambda }_{T}$$\end{document}, and the wavelength of instability motion, lambda\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda$$\end{document}, are nearly the same. This interesting phenomenon has been called flow-structure resonance. Through the numerical simulations, various flow modes, such as symmetric two-cell and four-cell modes, asymmetric two-cell mode, and oscillatory asymmetric two-cell mode are identified by changing the Marangoni number and wavelength of topography. It is clearly shown that for a certain lambda T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lambda }_{T}$$\end{document}-system, the transition from oscillatory mode to steady one is possible by relaxing the previous non-deformable surface condition due to high surface tension, i.e., Ca -> 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{Ca}}\to 0$$\end{document}, here Ca\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{Ca}}$$\end{document} is the capillary number. The present study reveals that the preferred flow mode is the complex function of the various parameters such as the Marangoni number, the Biot number, the wavelength of topography, and the capillary number.
引用
收藏
页码:411 / 424
页数:14
相关论文
共 50 条
  • [31] Numerical simulations on thermocapillary migrations of nondeformable droplets with large Marangoni numbers
    Yin, Zhaohua
    Chang, Lei
    Hu, Wenrui
    Li, Qiaohong
    Wang, Hongyu
    PHYSICS OF FLUIDS, 2012, 24 (09)
  • [32] Entrainment and bulk flow characteristics of heated and unheated transient plumes using direct numerical simulations
    Khan, Jalil ul Rehman
    Rao, Samrat
    PHYSICS OF FLUIDS, 2023, 35 (12)
  • [33] Liquid film flow along a substrate with an asymmetric topography sustained by the thermocapillary effect
    Frumkin, Valeri
    Oron, Alexander
    PHYSICS OF FLUIDS, 2016, 28 (08)
  • [34] Core-mantle boundary topography estimated from numerical simulations of instantaneous mantle flow
    Yoshida, Masaki
    GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS, 2008, 9
  • [35] Numerical modelling of thermocapillary deformation in a locally heated thin horizontal volatile liquid layer
    Barakhovskaya, Ella
    Marchuk, Igor
    Legros, Jean Claude
    INTERNATIONAL SYMPOSIUM AND SCHOOL OF YOUNG SCIENTISTS INTERFACIAL PHENOMENA AND HEAT TRANSFER (IPHT 2016), 2016, 84
  • [36] Numerical simulations of sinusoidal test apparatus's flow-field uniformity affect to the metrical results
    Wang Yu-fang
    Li Cheng
    Yu Jin
    Li Xin
    Liu Jing
    ISTM/2007: 7TH INTERNATIONAL SYMPOSIUM ON TEST AND MEASUREMENT, VOLS 1-7, CONFERENCE PROCEEDINGS, 2007, : 5146 - 5149
  • [37] Numerical simulations of sessile droplet evaporating on heated substrate
    Xue Chen
    Paul G. Chen
    Jalil Ouazzani
    Qiusheng Liu
    The European Physical Journal Special Topics, 2017, 226 : 1325 - 1335
  • [38] NUMERICAL SIMULATIONS OF IMPULSIVELY HEATED SOLAR-FLARES
    MARISKA, JT
    EMSLIE, AG
    LI, P
    ASTROPHYSICAL JOURNAL, 1989, 341 (02): : 1067 - 1074
  • [39] Numerical simulations of sessile droplet evaporating on heated substrate
    Chen, Xue
    Chen, Paul G.
    Ouazzani, Jalil
    Liu, Qiusheng
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2017, 226 (06): : 1325 - 1335
  • [40] THERMOCAPILLARY MOTION OF A DROPLET HEATED BY RADIATION
    REDNIKOV, AY
    RYAZANTSEV, YS
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1992, 35 (01) : 255 - 261