Numerical Simulations on Thermocapillary Flow on Heated Sinusoidal Topography

被引:2
|
作者
Kim, Min Chan [1 ]
机构
[1] Jeju Natl Univ, Dept Chem Engn, Jeju 63243, South Korea
关键词
Thermocapillary flow; Maragoni instability; Sinusoidal topography; Numerical simulation; SURFACE-TENSION; CONVECTION; DRIVEN;
D O I
10.1007/s11814-024-00109-1
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The interaction between thermocapillary flow and substrate geometry is analyzed numerically. Taking surface tension into account, the momentum equation is derived and solved using a commercial FEM solver, COMSOL Multiphysics where the effects of surface tension and surface deflection can be easily incorporated into the momentum equation. In the case that the Marangoni number is close to its critical value, i.e., Ma approximate to Mac\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\text{Ma}}\approx {\text{Ma}}}_{c}$$\end{document}, the strong symmetric thermocapillary flow is observed when the wavelength of topography, lambda T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lambda }_{T}$$\end{document}, and the wavelength of instability motion, lambda\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda$$\end{document}, are nearly the same. This interesting phenomenon has been called flow-structure resonance. Through the numerical simulations, various flow modes, such as symmetric two-cell and four-cell modes, asymmetric two-cell mode, and oscillatory asymmetric two-cell mode are identified by changing the Marangoni number and wavelength of topography. It is clearly shown that for a certain lambda T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lambda }_{T}$$\end{document}-system, the transition from oscillatory mode to steady one is possible by relaxing the previous non-deformable surface condition due to high surface tension, i.e., Ca -> 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{Ca}}\to 0$$\end{document}, here Ca\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{Ca}}$$\end{document} is the capillary number. The present study reveals that the preferred flow mode is the complex function of the various parameters such as the Marangoni number, the Biot number, the wavelength of topography, and the capillary number.
引用
收藏
页码:411 / 424
页数:14
相关论文
共 50 条
  • [21] Flow and stability of rivulets on heated surfaces with topography
    Gambaryan-Roisman, Tatiana
    Stephan, Peter
    PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON NANOCHANNELS, MICROCHANNNELS, AND MINICHANNELS, PTS A AND B, 2006, : 591 - +
  • [22] Thermocapillary flow transition in an evaporating liquid layer in a heated cylindrical cell
    Liu, Wenjun
    Chen, Paul G.
    Ouazzani, Jalil
    Liu, Qiusheng
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2020, 153
  • [23] Thermocapillary thin film flow upon a porous heated stretchable cylinder
    Gogoi, Partha Pratim
    Maity, Susanta
    HEAT TRANSFER, 2024, 53 (01) : 73 - 96
  • [25] Numerical computations for convective MHD flow of viscous fluid inside the hexagonal cavity having sinusoidal heated walls
    Nadeem, Sohail
    Akber, Rehan
    Ghazwani, Hassan Ali
    Alzabut, Jehad
    Hassan, Ahmed M.
    RESULTS IN PHYSICS, 2024, 56
  • [26] Heat Transfer and Thermocapillary Flow of a Double-Emulsion Droplet Heated Using an Infrared Laser by the Photothermal Effect: a Numerical Study
    Wang, Zhibin
    Su, Hongshi
    Chen, Ying
    Li, Yuxiu
    Li, Shuzhe
    MICROGRAVITY SCIENCE AND TECHNOLOGY, 2021, 33 (04)
  • [27] Heat Transfer and Thermocapillary Flow of a Double-Emulsion Droplet Heated Using an Infrared Laser by the Photothermal Effect: a Numerical Study
    Zhibin Wang
    Hongshi Su
    Ying Chen
    Yuxiu Li
    Shuzhe Li
    Microgravity Science and Technology, 2021, 33
  • [28] Direct numerical simulations of thermocapillary migration of a droplet attached to a solid wall
    Fath, Anja
    Bothe, Dieter
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2015, 77 : 209 - 221
  • [29] Instability mechanisms for thermocapillary flow in an annular pool heated from inner wall
    Liu, Hao
    Zeng, Zhong
    Yin, Linmao
    Qiao, Long
    Zhang, Liangqi
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2018, 127 : 996 - 1003
  • [30] Flow over heated terrain. Part I: Linear theory and idealized numerical simulations
    Crook, NA
    Tucker, DF
    MONTHLY WEATHER REVIEW, 2005, 133 (09) : 2552 - 2564