Data-Efficient Generation of Protein Conformational Ensembles with Backbone-to-Side-Chain Transformers

被引:7
|
作者
Chennakesavalu, Shriram [1 ]
Rotskoff, Grant M. [1 ,2 ]
机构
[1] Stanford Univ, Dept Chem, Stanford, CA 94305 USA
[2] Stanford Univ, Inst Computat & Math Engn, Stanford, CA 94305 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY B | 2024年 / 128卷 / 09期
关键词
INTRINSICALLY UNSTRUCTURED PROTEINS; ANDROGEN RECEPTOR; TRANSACTIVATION DOMAIN; MODEL; PREDICTION; ROTAMERS; PACKING;
D O I
10.1021/acs.jpcb.3c08195
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Excitement at the prospect of using data-driven generative models to sample configurational ensembles of biomolecular systems stems from the extraordinary success of these models on a diverse set of high-dimensional sampling tasks. Unlike image generation or even the closely related problem of protein structure prediction, there are currently no data sources with sufficient breadth to parametrize generative models for conformational ensembles. To enable discovery, a fundamentally different approach to building generative models is required: models should be able to propose rare, albeit physical, conformations that may not arise in even the largest data sets. Here we introduce a modular strategy to generate conformations based on "backmapping" from a fixed protein backbone that (1) maintains conformational diversity of the side chains and (2) couples the side-chain fluctuations using global information about the protein conformation. Our model combines simple statistical models of side-chain conformations based on rotamer libraries with the now ubiquitous transformer architecture to sample with atomistic accuracy. Together, these ingredients provide a strategy for rapid data acquisition and hence a crucial ingredient for scalable physical simulation with generative neural networks.
引用
收藏
页码:2114 / 2123
页数:10
相关论文
共 50 条
  • [31] Minimal ensembles of side chain conformers for modeling protein-protein interactions
    Beglov, Dmitri
    Hall, David R.
    Brenke, Ryan
    Shapovalov, Maxim V.
    Dunbrack, Roland L., Jr.
    Kozakov, Dima
    Vajda, Sandor
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2012, 80 (02) : 591 - 601
  • [32] Minimal ensembles of side chain conformers for modeling protein-protein interactions
    Beglov, Dmitri
    Hall, David
    Kozakov, Dima
    Brenke, Ryan
    Dunbrack, Roland
    Vajda, Sandor
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 242
  • [33] Integrative Modeling of Protein Conformational Ensembles using Limited Data
    MacCallum, Justin L.
    Perez, Alberto
    Dill, Kenneth A.
    BIOPHYSICAL JOURNAL, 2013, 104 (02) : 546A - 547A
  • [34] A simple model of backbone flexibility improves modeling of side-chain conformational variability
    Friedland, Gregory D.
    Linares, Anthony J.
    Smith, Colin A.
    Kortemme, Tanja
    JOURNAL OF MOLECULAR BIOLOGY, 2008, 380 (04) : 757 - 774
  • [35] Side-Chain to Backbone Interactions Dictate the Conformational Preferences of a Cyclopentane Arginine Analogue
    Revilla-Lopez, Guillem
    Torras, Juan
    Jimenez, Ana I.
    Cativiela, Carlos
    Nussinov, Ruth
    Aleman, Carlos
    JOURNAL OF ORGANIC CHEMISTRY, 2009, 74 (06): : 2403 - 2412
  • [36] EnGens: a computational framework for generation and analysis of representative protein conformational ensembles
    Conev, Anja
    Rigo, Mauricio Menegatti
    Devaurs, Didier
    Fonseca, Andre Faustino
    Kalavadwala, Hussain
    de Freitas, Martiela Vaz
    Clementi, Cecilia
    Zanatta, Geancarlo
    Antunes, Dinler Amaral
    Kavraki, Lydia E.
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (04)
  • [37] Efficient conformational sampling of local side-chain flexibility
    Källblad, P
    Dean, PM
    JOURNAL OF MOLECULAR BIOLOGY, 2003, 326 (05) : 1651 - 1665
  • [38] Side-chain conformational entropy at protein-protein interfaces
    Cole, C
    Warwicker, J
    PROTEIN SCIENCE, 2002, 11 (12) : 2860 - 2870
  • [39] DEGREE: A Data-Efficient Generation-Based Event Extraction Model
    Hsu, I-Hung
    Huang, Kuan-Hao
    Boschee, Elizabeth
    Miller, Scott
    Natarajan, Premkumar
    Chang, Kai-Wei
    Peng, Nanyun
    NAACL 2022: THE 2022 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES, 2022, : 1890 - 1908
  • [40] CONFORMATIONAL-ANALYSIS OF THE BACKBONE-DEPENDENCE OF PROTEIN SIDE-CHAIN ROTAMER PREFERENCES - APPLICATIONS TO HOMOLOGY MODELING AND PROTEIN-FOLDING
    DUNBRACK, RL
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1995, 210 : 6 - COMP