Data-Efficient Generation of Protein Conformational Ensembles with Backbone-to-Side-Chain Transformers

被引:7
|
作者
Chennakesavalu, Shriram [1 ]
Rotskoff, Grant M. [1 ,2 ]
机构
[1] Stanford Univ, Dept Chem, Stanford, CA 94305 USA
[2] Stanford Univ, Inst Computat & Math Engn, Stanford, CA 94305 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY B | 2024年 / 128卷 / 09期
关键词
INTRINSICALLY UNSTRUCTURED PROTEINS; ANDROGEN RECEPTOR; TRANSACTIVATION DOMAIN; MODEL; PREDICTION; ROTAMERS; PACKING;
D O I
10.1021/acs.jpcb.3c08195
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Excitement at the prospect of using data-driven generative models to sample configurational ensembles of biomolecular systems stems from the extraordinary success of these models on a diverse set of high-dimensional sampling tasks. Unlike image generation or even the closely related problem of protein structure prediction, there are currently no data sources with sufficient breadth to parametrize generative models for conformational ensembles. To enable discovery, a fundamentally different approach to building generative models is required: models should be able to propose rare, albeit physical, conformations that may not arise in even the largest data sets. Here we introduce a modular strategy to generate conformations based on "backmapping" from a fixed protein backbone that (1) maintains conformational diversity of the side chains and (2) couples the side-chain fluctuations using global information about the protein conformation. Our model combines simple statistical models of side-chain conformations based on rotamer libraries with the now ubiquitous transformer architecture to sample with atomistic accuracy. Together, these ingredients provide a strategy for rapid data acquisition and hence a crucial ingredient for scalable physical simulation with generative neural networks.
引用
收藏
页码:2114 / 2123
页数:10
相关论文
共 50 条
  • [41] Detection of Correlated Protein Backbone and Side-Chain Angle Fluctuations
    Fenwick, R. Bryn
    Vogeli, Beat
    CHEMBIOCHEM, 2017, 18 (20) : 2016 - 2021
  • [42] Backrub-like backbone simulation recapitulates natural protein conformational variability and improves mutant side-chain prediction
    Smith, Colin A.
    Kortemme, Tanja
    JOURNAL OF MOLECULAR BIOLOGY, 2008, 380 (04) : 742 - 756
  • [43] Rapid and accurate protein side chain prediction with local backbone information
    Zhang, Jing
    Gao, Xin
    Xu, Jinbo
    Li, Ming
    RESEARCH IN COMPUTATIONAL MOLECULAR BIOLOGY, PROCEEDINGS, 2008, 4955 : 285 - +
  • [44] Prediction and evaluation of side-chain conformations for protein backbone structures
    Shenkin, PS
    Farid, H
    Fetrow, JS
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 1996, 26 (03) : 323 - 352
  • [45] Computational protein design with side-chain conformational entropy
    Sciretti, Daniele
    Bruscolini, Pierpaolo
    Pelizzola, Alessandro
    Pretti, Marco
    Jaramillo, Alfonso
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2009, 74 (01) : 176 - 191
  • [46] Quantifying side-chain conformational variations in protein structure
    Zhichao Miao
    Yang Cao
    Scientific Reports, 6
  • [47] Side-chain conformational entropy in protein unfolded states
    Creamer, TP
    PROTEINS-STRUCTURE FUNCTION AND GENETICS, 2000, 40 (03): : 443 - 450
  • [48] Protein Side-Chain Dynamics and Residual Conformational Entropy
    Trbovic, Nikola
    Cho, Jae-Hyun
    Abel, Robert
    Friesner, Richard A.
    Rance, Mark
    Palmer, Arthur G., III
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (02) : 615 - 622
  • [49] SIDE-CHAIN CONFORMATIONAL ENTROPY IN PROTEIN-FOLDING
    DOIG, AJ
    STERNBERG, MJE
    PROTEIN SCIENCE, 1995, 4 (11) : 2247 - 2251
  • [50] Quantifying side-chain conformational variations in protein structure
    Miao, Zhichao
    Cao, Yang
    SCIENTIFIC REPORTS, 2016, 6