Rapid automated lumen segmentation of coronary optical coherence tomography images followed by 3D reconstruction of coronary arteries

被引:0
|
作者
Wu, Wei [1 ]
Roby, Merjulah [2 ]
Banga, Akshat [1 ]
Oguz, Usama M. [1 ]
Gadamidi, Vinay Kumar [1 ]
Hasini Vasa, Charu [1 ]
Zhao, Shijia [1 ]
Dasari, Vineeth S. [1 ]
Thota, Anjani Kumar [1 ]
Tanweer, Sartaj [1 ]
Lee, Changkye [1 ]
Kassab, Ghassan S. [3 ]
Chatzizisis, Yiannis S. [1 ]
机构
[1] Univ Miami, Ctr Digital Cardiovasc Innovat, Miller Sch Med, Div Cardiovasc Med, Miami, FL 33136 USA
[2] Univ Texas San Antonio, Dept Mech Engn Vasc Biomech & Biofluids, San Antonio, TX USA
[3] Calif Med Innovat Inst, San Diego, CA USA
基金
美国国家卫生研究院;
关键词
optical coherence tomography; image segmentation; nonuniform rational B-spline; three-dimensional reconstruction; OCT; ACCURATE;
D O I
10.1117/1.JMI.11.1.014004
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: Optical coherence tomography has emerged as an important intracoronary imaging technique for coronary artery disease diagnosis as it produces high-resolution cross-sectional images of luminal and plaque morphology. Precise and fast lumen segmentation is essential for efficient OCT morphometric analysis. However, due to the presence of various image artifacts, including side branches, luminal blood artifacts, and complicated lesions, this remains a challenging task. Approach: Our research study proposes a rapid automatic segmentation method that utilizes nonuniform rational B-spline to connect limited pixel points and identify the edges of the OCT lumen. The proposed method suppresses image noise and accurately extracts the lumen border with a high correlation to ground truth images based on the area, minimal diameter, and maximal diameter. Results: We evaluated the method using 3300 OCT frames from 10 patients and found that it achieved favorable results. The average time taken for automatic segmentation by the proposed method is 0.17 s per frame. Additionally, the proposed method includes seamless vessel reconstruction following the lumen segmentation. Conclusions: The developed automated system provides an accurate, efficient, robust, and user-friendly platform for coronary lumen segmentation and reconstruction, which can pave the way for improved assessment of the coronary artery lumen morphology. (c) The Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License.Distribution or reproduction of this work in whole or in part requires full attribution of the originalpublication, including its DOI.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Automated Segmentation of Dental Calculus in Optical Coherence Tomography Images
    Lee, Chia-Yen
    Chuang, Ching-Cheng
    Chen, Guan-Jie
    Huang, Chih-Chia
    Lee, Shyh-Yuan
    Lin, Yu-Hsien
    [J]. SENSORS AND MATERIALS, 2018, 30 (11) : 2517 - 2529
  • [42] Region segmentation in 3-D optical coherence tomography images
    Chou, Cheng-wei
    Lee, Jiann-der
    Liu, Carol T.
    Tsai, Meng-tsan
    [J]. 2014 IEEE INTERNATIONAL SYMPOSIUM ON BIOELECTRONICS AND BIOINFORMATICS (ISBB), 2014,
  • [43] Coronary Stent Reconstruction in Intravascular Optical Coherence Tomography
    Liu Tiegen
    Tao Kuiyuan
    Ding Zhenyang
    Liu Kun
    Jiang Junfeng
    Lu Ruixiang
    Huang Jinyu
    Zhou Liang
    Gao Beibei
    Tong Guoxin
    Cao Ping
    Deng Peitao
    Xu Keyong
    Peng Chengqing
    Wan Tong
    Ou Guikang
    [J]. ACTA OPTICA SINICA, 2021, 41 (04)
  • [44] Segmentation Based Sparse Reconstruction of Optical Coherence Tomography Images
    Fang, Leyuan
    Li, Shutao
    Cunefare, David
    Farsiu, Sina
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2017, 36 (02) : 407 - 421
  • [45] Clinical validation of an algorithm for rapid and accurate automated segmentation of intracoronary optical coherence tomography images
    Chatzizisis, Yiannis S.
    Koutkias, Vassilis G.
    Toutouzas, Konstantinos
    Giannopoulos, Andreas
    Chouvarda, Ioanna
    Riga, Maria
    Antoniadis, Antonios P.
    Cheimariotis, Grigorios
    Doulaverakis, Charalampos
    Tsampoulatidis, Ioannis
    Bouki, Konstantina
    Kompatsiaris, Ioannis
    Stefanadis, Christodoulos
    Maglaveras, Nicos
    Giannoglou, George D.
    [J]. INTERNATIONAL JOURNAL OF CARDIOLOGY, 2014, 172 (03) : 568 - 580
  • [46] Segmentation Guided Registration for 3D Spectral-Domain Optical Coherence Tomography Images
    Pan, Lingjiao
    Guan, Liling
    Chen, Xinjian
    [J]. IEEE ACCESS, 2019, 7 : 138833 - 138845
  • [47] Three-dimensional spatial reconstruction of coronary arteries based on fusion of intravascular optical coherence tomography and coronary angiography
    Zhu, Yanan
    Zhu, Fengyu
    Ding, Zhenyang
    Tao, Kuiyuan
    Lai, Tianduo
    Kuang, Hao
    Hua, Peidong
    Shang, Mingjian
    Hu, Jingqi
    Yu, Yin
    Liu, Tiegen
    [J]. JOURNAL OF BIOPHOTONICS, 2021, 14 (03)
  • [48] Histopathological validation of optical coherence tomography findings of the coronary arteries
    Fujii, Kenichi
    Kawakami, Rika
    Hirota, Seiichi
    [J]. JOURNAL OF CARDIOLOGY, 2018, 72 (3-4) : 179 - 185
  • [49] Lumen Segmentation in Optical Coherence Tomography Images using Convolutional Neural Network
    Miyagawa, M.
    Costa, M. G. F.
    Gutierrez, M. A.
    Costa, J. P. G. F.
    Costa Filho, C. F. F.
    [J]. 2018 40TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2018, : 600 - 603
  • [50] A method for 3D reconstruction of coronary arteries using biplane angiography and intravascular ultrasound images
    Bourantas, CV
    Kourtis, IC
    Plissiti, ME
    Fotiadis, DI
    Katsouras, CS
    Papafaklis, MI
    Michalis, LK
    [J]. COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2005, 29 (08) : 597 - 606