Segmentation Guided Registration for 3D Spectral-Domain Optical Coherence Tomography Images

被引:5
|
作者
Pan, Lingjiao [1 ,3 ]
Guan, Liling [1 ]
Chen, Xinjian [1 ,2 ]
机构
[1] Soochow Univ, Sch Elect & Informat Engn, Suzhou 215006, Peoples R China
[2] Soochow Univ, Sch Radiat Med & Protect, State Key Lab Radiat Med & Protect, Suzhou 215006, Peoples R China
[3] Jiangsu Univ Technol, Sch Elect & Informat Engn, Changzhou 213001, Peoples R China
来源
IEEE ACCESS | 2019年 / 7卷
基金
中国国家自然科学基金;
关键词
Medical image; image registration; non-rigid registration; spectral-domain optical coherence tomography (SD-OCT); speeded-up robust features (SURF); graph cut; RETINAL LAYER SEGMENTATION; SPECKLE NOISE-REDUCTION; MOTION CORRECTION; OCT; MODEL;
D O I
10.1109/ACCESS.2019.2943172
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Medical image registration can be used for combining information from multiple imaging modalities, monitoring changes in size, shape or image intensity over time intervals. However, the development of such technique can be challenging for 3D spectral-domain optical coherence tomography (SD-OCT) imaging, because SD-OCT image is inherently noisy and its high resolution leads to high complexity of non-rigid registration. In this paper, a new segmentation guided approach is reported for registration of retinal OCT data. The proposed method models the 3D registration as a two-stage registration including x-y direction registration and z direction registration. In x-y direction registration, the vessel maps of OCT projection images between the template and the subject are registered to find out x-y direction displacement. The multi-scale vessel enhancement filter and morphological thinning methods are used to extract the vessel maps from the projection image of 3D OCT scans. And then x-y direction displacement is estimated by matching Speeded-Up Robust Features of the vessel maps. In z direction registration, using the tissue map instead of the original intensity image, A-scans are aligned to get the local displacements in z direction. The proposed method was evaluated on 45 longitudinal retinal OCT scans from 15 subjects. Experimental results show that the proposed method is accurate and very efficient.
引用
收藏
页码:138833 / 138845
页数:13
相关论文
共 50 条
  • [1] Automated Multilayer Segmentation and Characterization in 3-D Spectral-domain Optical Coherence Tomography Images
    Hu, Zhihong
    Wu, Xiaodong
    Hariri, Amirhossein
    Sadda, SriniVas R.
    OPHTHALMIC TECHNOLOGIES XXIII, 2013, 8567
  • [2] Automated Segmentation of Multiple Intraretinal Boundaries in 3D Spectral-Domain Optical Coherence Tomography
    Hangai, M.
    Tomidokoro, A.
    Araie, M.
    Yoshimura, N.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2010, 51 (13)
  • [3] Automated 3-D Intraretinal Layer Segmentation of Macular Spectral-Domain Optical Coherence Tomography Images
    Garvin, Mona Kathryn
    Abramoff, Michael David
    Wu, Xiaodong
    Russell, Stephen R.
    Burns, Trudy L.
    Sonka, Milan
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2009, 28 (09) : 1436 - 1447
  • [4] Segmentation of the Geographic Atrophy in Spectral-Domain Optical Coherence Tomography and Fundus Autofluorescence Images
    Hu, Zhihong
    Medioni, Gerard G.
    Hernandez, Matthias
    Hariri, Amirhossein
    Wu, Xiaodong
    Sadda, SriniVas R.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2013, 54 (13) : 8375 - 8383
  • [5] A SPARSITY-BASED SIMPLIFICATION METHOD FOR SEGMENTATION OF SPECTRAL-DOMAIN OPTICAL COHERENCE TOMOGRAPHY IMAGES
    Meiniel, William
    Gan, Yu
    Olivo-Marin, Jean-Christophe
    Angelini, Elsa
    WAVELETS AND SPARSITY XVII, 2017, 10394
  • [6] FloatingCanvas: quantification of 3D retinal structures from spectral-domain optical coherence tomography
    Zhu, Haogang
    Crabb, David P.
    Schlottmann, Patricio G.
    Ho, Tuan
    Garway-Heath, David F.
    OPTICS EXPRESS, 2010, 18 (24): : 24595 - 24610
  • [7] The promise of spectral-domain optical coherence tomography
    Medeiros, Felipe A.
    Weinreb, Robert N.
    EXPERT REVIEW OF OPHTHALMOLOGY, 2008, 3 (05) : 501 - 504
  • [8] Choroidal neovascularization fusion visualization for spectral-domain optical coherence tomography and optical coherence tomography angiography images
    Huang, Chen
    Xie, Keren
    Zhang, Yuhan
    Li, Mingchao
    Yuan, Songtao
    Chen, Qiang
    MEDICAL PHYSICS, 2021, 48 (04) : 1731 - 1738
  • [9] Automated 3-D method for the correction of axial artifacts in spectral-domain optical coherence tomography images
    Antony, Bhavna
    Abramoff, Michael D.
    Tang, Li
    Ramdas, Wishal D.
    Vingerling, Johannes R.
    Jansonius, Nomdo M.
    Lee, Kyungmoo
    Kwon, Young H.
    Sonka, Milan
    Garvin, Mona K.
    BIOMEDICAL OPTICS EXPRESS, 2011, 2 (08): : 2403 - 2416
  • [10] Semiautomated Segmentation of the Choroid in Spectral-Domain Optical Coherence Tomography Volume Scans
    Hu, Zhihong
    Wu, Xiaodong
    Ouyang, Yanwei
    Ouyang, Yanling
    Sadda, Srinivas R.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2013, 54 (03) : 1722 - 1729