Automated 3-D Intraretinal Layer Segmentation of Macular Spectral-Domain Optical Coherence Tomography Images

被引:480
|
作者
Garvin, Mona Kathryn [1 ]
Abramoff, Michael David [2 ]
Wu, Xiaodong [3 ]
Russell, Stephen R.
Burns, Trudy L. [4 ]
Sonka, Milan [1 ,3 ]
机构
[1] Univ Iowa, Dept Elect & Comp Engn, Dept Ophthalmol & Visual Sci, Iowa City, IA 52242 USA
[2] VA Med Ctr, Iowa City, IA 52246 USA
[3] Univ Iowa, Dept Radiat Oncol, Iowa City, IA 52242 USA
[4] Univ Iowa, Coll Publ Hlth, Dept Epidemiol, Iowa City, IA 52242 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Ophthalmology; optical coherence tomography; retina; segmentation; spectral-domain; three-dimensional (3-D) graph search; RETINAL LAYER; GRAPH SEARCH; THICKNESS;
D O I
10.1109/TMI.2009.2016958
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
With the introduction of spectral-domain optical coherence tomography (OCT), much larger image datasets; are routinely acquired compared to what was possible using the previous generation of time-domain OCT. Thus, the need for 3-D segmentation methods for processing such data is becoming increasingly important. We report a graph-theoretic segmentation method for the simultaneous segmentation of multiple 3-D surfaces that is guaranteed to be optimal with respect to the cost function and that is directly applicable to the segmentation of 3-D spectral OCT image data. We present two extensions to the general layered graph segmentation method: the ability to incorporate varying feasibility constraints and the ability to incorporate true regional information. Appropriate feasibility constraints and cost functions were learned from a training set of 13 spectral-domain OCT images from 13 subjects. After training, our approach was tested on a test set of 28 images from 14 subjects. An overall mean unsigned border positioning error of 5.69 +/- 2.41 mu m was achieved when segmenting seven surfaces (six layers) and using the average of the manual tracings of two ophthalmologists as the reference standard. This result is very comparable to the measured interobserver variability of 5.71 +/- 1.98 mu m.
引用
收藏
页码:1436 / 1447
页数:12
相关论文
共 50 条
  • [1] Automated Multilayer Segmentation and Characterization in 3-D Spectral-domain Optical Coherence Tomography Images
    Hu, Zhihong
    Wu, Xiaodong
    Hariri, Amirhossein
    Sadda, SriniVas R.
    [J]. OPHTHALMIC TECHNOLOGIES XXIII, 2013, 8567
  • [2] Automated Segmentation of Multiple Intraretinal Boundaries in 3D Spectral-Domain Optical Coherence Tomography
    Hangai, M.
    Tomidokoro, A.
    Araie, M.
    Yoshimura, N.
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2010, 51 (13)
  • [3] Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search
    Garvin, Mona K.
    Abramoff, Michael D.
    Kardon, Randy
    Russell, Stephen R.
    Wu, Xiaodong
    Sonka, Milan
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2008, 27 (10) : 1495 - 1505
  • [4] Automated 3-D method for the correction of axial artifacts in spectral-domain optical coherence tomography images
    Antony, Bhavna
    Abramoff, Michael D.
    Tang, Li
    Ramdas, Wishal D.
    Vingerling, Johannes R.
    Jansonius, Nomdo M.
    Lee, Kyungmoo
    Kwon, Young H.
    Sonka, Milan
    Garvin, Mona K.
    [J]. BIOMEDICAL OPTICS EXPRESS, 2011, 2 (08): : 2403 - 2416
  • [5] Automated segmentation of intraretinal layers from macular optical coherence tomography images
    Haeker, Mona
    Sonka, Milan
    Kardon, Randy
    Shah, Vinay A.
    Wu, Xiaodong
    Abramoff, Michael D.
    [J]. MEDICAL IMAGING 2007: IMAGE PROCESSING, PTS 1-3, 2007, 6512
  • [6] Macular thickness changes using spectral-domain optical coherence tomography automated layer segmentation in multiple sclerosis
    Barata, A.
    Leal, I.
    Sousa, F.
    Teixeira, F.
    Henriques, J.
    Pinto, F.
    [J]. ACTA OPHTHALMOLOGICA, 2017, 95
  • [7] Segmentation Guided Registration for 3D Spectral-Domain Optical Coherence Tomography Images
    Pan, Lingjiao
    Guan, Liling
    Chen, Xinjian
    [J]. IEEE ACCESS, 2019, 7 : 138833 - 138845
  • [8] Automated retinal layer segmentation in optical coherence tomography images with intraretinal fluid
    Wang, Luquan
    Li, Xiaowen
    Chen, Yong
    Han, Dingan
    Wang, Mingyi
    Zeng, Yaguang
    Zhong, Junping
    Wang, Xuehua
    Ji, Yanhong
    Xiong, Honglian
    Wei, Xunbin
    [J]. JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES, 2022, 15 (03)
  • [9] Automated 3-D Segmentation of Intraretinal Layers from Optic Nerve Head Optical Coherence Tomography Images
    Antony, Bhavna J.
    Abramoff, Michael D.
    Lee, Kyungmoo
    Sonkova, Pavlina
    Gupta, Priya
    Kwon, Young
    Niemeijer, Meindert
    Hu, Zhihong
    Garvin, Mona K.
    [J]. MEDICAL IMAGING 2010: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2010, 7626
  • [10] Automated 3-D Retinal Layer Segmentation of Macular Optical Coherence Tomography Images With Serous Pigment Epithelial Detachments
    Shi, Fei
    Chen, Xinjian
    Zhao, Heming
    Zhu, Weifang
    Xiang, Dehui
    Gao, Enting
    Sonka, Milan
    Chen, Haoyu
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2015, 34 (02) : 441 - 452