On The Closures of Monotone Algebraic Classes and Variants of the Determinant

被引:0
|
作者
Chaugule, Prasad [1 ]
Limaye, Nutan [2 ]
机构
[1] IIT Delhi, Dept Comp Sci & Engn, New Delhi, India
[2] ITU Copenhagen, Comp Sci Dept, Copenhagen, Denmark
关键词
Monotone algebraic classes; Determinant polynomial; Algebraic complexity classes; Closures of algebraic classes;
D O I
10.1007/s00453-024-01221-8
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper we prove the following two results.We show that for any C is an element of{mVF,mVP,mVNP}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C \in \{\textsf {mVF}, \textsf {mVP}, \textsf {mVNP}\}$$\end{document}, C=C over bar \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C = \overline{C}$$\end{document}. Here, mVF,mVP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {mVF}, \textsf {mVP}$$\end{document}, and mVNP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {mVNP}$$\end{document} are monotone variants of VF,VP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {VF}, \textsf {VP}$$\end{document}, and VNP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {VNP}$$\end{document}, respectively. For an algebraic complexity class , C over bar \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{C}$$\end{document} denotes the closure of . For mVBP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {mVBP}$$\end{document} a similar result was shown in Blaser et al. (in: 35th Computational Complexity Conference, CCC 2020. LIPIcs, vol 169, pp 21-12124, 2020. https://doi.org/10.4230/LIPIcs.CCC.2020.21). Here we extend their result by adapting their proof.We define polynomial families {P(k)n}n >= 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\mathcal {P}(k)_n\}_{n \ge 0}$$\end{document}, such that {P(0)n}n >= 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\mathcal {P}(0)_n\}_{n \ge 0}$$\end{document} equals the determinant polynomial. We show that {P(k)n}n >= 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\mathcal {P}(k)_n\}_{n \ge 0}$$\end{document} is VBP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {VBP}$$\end{document} complete for k=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=1$$\end{document} and it becomes VNP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {VNP}$$\end{document} complete when k >= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \ge 2$$\end{document}. In particular, {P(k)n}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\mathcal {P}(k)_n\}$$\end{document} is Detn not equal k(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathtt {Det<^>{\ne k}_n(X)}$$\end{document}, a polynomial obtained by summing over all signed cycle covers that avoid length cycles. We show that Detn not equal 1(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathtt {Det<^>{\ne 1}_n(X)}$$\end{document} is complete for VBP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {VBP}$$\end{document} and Detn not equal k(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathtt {Det<^>{\ne k}_n(X)}$$\end{document} is complete for VNP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {VNP}$$\end{document} for all k >= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \ge 2$$\end{document} over any field F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}$$\end{document}.
引用
收藏
页码:2130 / 2151
页数:22
相关论文
共 50 条
  • [41] EQUIVARIANT CHOW CLASSES OF MATRIX ORBIT CLOSURES
    ANDREW BERGET
    ALEX FINK
    Transformation Groups, 2017, 22 : 631 - 643
  • [42] On feebly monotone and related classes of mappings
    Charatonik, JJ
    TOPOLOGY AND ITS APPLICATIONS, 2000, 105 (01) : 15 - 29
  • [43] Interpolation classes and matrix monotone functions
    Ameur, Yacin
    Kaijser, Sten
    Silvestrov, Serge
    JOURNAL OF OPERATOR THEORY, 2007, 57 (02) : 409 - 427
  • [44] Sketching Distances in Monotone Graph Classes
    Esperet, Louis
    Harms, Nathaniel
    Kupavskii, Andrey
    arXiv, 2022,
  • [45] On some classes of directionally monotone functions
    Bustince, H.
    Mesiar, R.
    Kolesarova, A.
    Dimuro, G. P.
    Fernandez, J.
    Diaz, I
    Montes, S.
    FUZZY SETS AND SYSTEMS, 2020, 386 : 161 - 178
  • [46] The Hamiltonian Cycle Problem and Monotone Classes
    Lozin, Vadim
    COMBINATORIAL ALGORITHMS, IWOCA 2024, 2024, 14764 : 460 - 471
  • [47] Waterman classes and piecewise monotone approximations
    Bakhvalov A.N.
    Moscow University Mathematics Bulletin, 2009, 64 (6) : 259 - 261
  • [48] Natural closures, natural compositions and natural sums of monotone operators
    Penot, Jean-Paul
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2008, 89 (06): : 523 - 537
  • [49] UNIVERSAL CLASSES FOR ALGEBRAIC GROUPS
    Touze, Antoine
    DUKE MATHEMATICAL JOURNAL, 2010, 151 (02) : 219 - 249
  • [50] Algebraic equivalence and homology classes of real algebraic cycles
    Kucharz, W
    MATHEMATISCHE NACHRICHTEN, 1996, 180 : 135 - 140