On The Closures of Monotone Algebraic Classes and Variants of the Determinant

被引:0
|
作者
Chaugule, Prasad [1 ]
Limaye, Nutan [2 ]
机构
[1] IIT Delhi, Dept Comp Sci & Engn, New Delhi, India
[2] ITU Copenhagen, Comp Sci Dept, Copenhagen, Denmark
关键词
Monotone algebraic classes; Determinant polynomial; Algebraic complexity classes; Closures of algebraic classes;
D O I
10.1007/s00453-024-01221-8
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper we prove the following two results.We show that for any C is an element of{mVF,mVP,mVNP}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C \in \{\textsf {mVF}, \textsf {mVP}, \textsf {mVNP}\}$$\end{document}, C=C over bar \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C = \overline{C}$$\end{document}. Here, mVF,mVP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {mVF}, \textsf {mVP}$$\end{document}, and mVNP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {mVNP}$$\end{document} are monotone variants of VF,VP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {VF}, \textsf {VP}$$\end{document}, and VNP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {VNP}$$\end{document}, respectively. For an algebraic complexity class , C over bar \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{C}$$\end{document} denotes the closure of . For mVBP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {mVBP}$$\end{document} a similar result was shown in Blaser et al. (in: 35th Computational Complexity Conference, CCC 2020. LIPIcs, vol 169, pp 21-12124, 2020. https://doi.org/10.4230/LIPIcs.CCC.2020.21). Here we extend their result by adapting their proof.We define polynomial families {P(k)n}n >= 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\mathcal {P}(k)_n\}_{n \ge 0}$$\end{document}, such that {P(0)n}n >= 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\mathcal {P}(0)_n\}_{n \ge 0}$$\end{document} equals the determinant polynomial. We show that {P(k)n}n >= 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\mathcal {P}(k)_n\}_{n \ge 0}$$\end{document} is VBP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {VBP}$$\end{document} complete for k=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=1$$\end{document} and it becomes VNP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {VNP}$$\end{document} complete when k >= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \ge 2$$\end{document}. In particular, {P(k)n}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\mathcal {P}(k)_n\}$$\end{document} is Detn not equal k(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathtt {Det<^>{\ne k}_n(X)}$$\end{document}, a polynomial obtained by summing over all signed cycle covers that avoid length cycles. We show that Detn not equal 1(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathtt {Det<^>{\ne 1}_n(X)}$$\end{document} is complete for VBP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {VBP}$$\end{document} and Detn not equal k(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathtt {Det<^>{\ne k}_n(X)}$$\end{document} is complete for VNP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {VNP}$$\end{document} for all k >= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \ge 2$$\end{document} over any field F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}$$\end{document}.
引用
收藏
页码:2130 / 2151
页数:22
相关论文
共 50 条
  • [11] Monotone Classes of Dendrites
    Martinez-de-la-Vega, Veronica
    Mouron, Christopher
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2016, 68 (03): : 675 - 697
  • [12] On isomorphism classes of Zariski dense subgroups of semisimple algebraic groups with isomorphic p-adic closures
    Thang, NQ
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2002, 78 (05) : 60 - 62
  • [13] INTEGRAL CLOSURES IN REAL ALGEBRAIC GEOMETRY
    Fichou, Goulwen
    Monnier, Jean-Philippe
    Quarez, Ronan
    JOURNAL OF ALGEBRAIC GEOMETRY, 2021, 30 (02) : 253 - 285
  • [14] MONOTONE APPROXIMATION BY ALGEBRAIC POLYNOMIALS
    LORENTZ, GG
    ZELLER, KL
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 149 (01) : 1 - &
  • [15] ON ALGEBRAIC PROPERTIES OF MONOTONE CLONES
    DEMETROVICS, J
    HANNAK, L
    RONYAI, L
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1986, 3 (03): : 219 - 225
  • [16] Orbit Closures of Linear Algebraic Groups
    de Graaf, Willem A.
    COMPUTER ALGEBRA AND POLYNOMIALS: APPLICATIONS OF ALGEBRA AND NUMBER THEORY, 2015, 8942 : 76 - 93
  • [17] Algebraic Closures in Divisible Rigid Groups
    Romanovskii, N. S.
    SIBERIAN MATHEMATICAL JOURNAL, 2024, 65 (04) : 840 - 845
  • [18] LIMIT CLOSURES OF CLASSES OF COMMUTATIVE RINGS
    Barr, Michael
    Kennison, John F.
    Raphael, R.
    THEORY AND APPLICATIONS OF CATEGORIES, 2015, 30 : 229 - 304
  • [19] CLOSURES OF CONJUGACY CLASSES OF MATRICES ARE NORMAL
    KRAFT, H
    PROCESI, C
    INVENTIONES MATHEMATICAE, 1979, 53 (03) : 227 - 247
  • [20] Monotone classes beyond VNP
    Chatterjee, Prerona
    Gajjar, Kshitij
    Tengse, Anamay
    THEORETICAL COMPUTER SCIENCE, 2024, 1009