The Hamiltonian Cycle Problem and Monotone Classes

被引:0
|
作者
Lozin, Vadim [1 ]
机构
[1] Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England
来源
关键词
Hamiltonian cycle; Polynomial algorithm; Monotone class;
D O I
10.1007/978-3-031-63021-7_35
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study the computational complexity of the Hamiltonian cycle problem on monotone classes of graphs, i.e. classes closed under taking subgraphs. We focus on classes defined by a single forbidden subgraph and present some necessary and some sufficient conditions for polynomial-time solvability of the problem in this case (assuming P not equal NP). The main result is a polynomial-time algorithm to solve the problem for graphs excluding a certain tree, called the long-H, as a subgraph.
引用
收藏
页码:460 / 471
页数:12
相关论文
共 50 条
  • [1] The parity Hamiltonian cycle problem
    Nishiyama, Hiroshi
    Kobayashi, Yusuke
    Yamauchi, Yukiko
    Kijima, Shuji
    Yamashita, Masafumi
    DISCRETE MATHEMATICS, 2018, 341 (03) : 606 - 626
  • [2] Cycle extendability and Hamiltonian cycles in chordal graph classes
    Abueida, Atif
    Sritharan, R.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2006, 20 (03) : 669 - 681
  • [3] A P system for Hamiltonian cycle problem
    Guo, Ping
    Dai, Yunlei
    Chen, Haizhu
    OPTIK, 2016, 127 (20): : 8461 - 8468
  • [5] On the complexity of hamiltonian path and cycle problems in certain classes of digraphs
    Bang-Jensen, J
    Gutin, G
    DISCRETE APPLIED MATHEMATICS, 1999, 95 (1-3) : 41 - 60
  • [6] Hamiltonian cycle problem for planar cubic graphs
    Benediktovich, VI
    Sarvanov, VI
    DOKLADY AKADEMII NAUK BELARUSI, 1997, 41 (01): : 34 - 37
  • [7] On the parallel complexity of the alternating Hamiltonian cycle problem
    Bampis, E
    Manoussakis, Y
    Milis, I
    RAIRO-RECHERCHE OPERATIONNELLE-OPERATIONS RESEARCH, 1999, 33 (04): : 421 - 437
  • [8] The Hamiltonian cycle problem based on DNA computing
    Liu, Wenbin
    Zhu, Xiangou
    Gao, Lin
    INTERNATIONAL JOURNAL OF UNCONVENTIONAL COMPUTING, 2007, 3 (02) : 69 - 77
  • [9] Looking for the Hardest Hamiltonian Cycle Problem Instances
    Sleegers, Joeri
    van den Berg, Daan
    PROCEEDINGS OF THE 12TH INTERNATIONAL JOINT CONFERENCE ON COMPUTATIONAL INTELLIGENCE (IJCCI), 2020, : 40 - 48
  • [10] COMPLEXITY OF THE HAMILTONIAN CYCLE IN REGULAR GRAPH PROBLEM
    PICOULEAU, C
    THEORETICAL COMPUTER SCIENCE, 1994, 131 (02) : 463 - 473