A data reconstruction-based Monte Carlo method for remaining useful life prediction of lithium-ion battery with few historical samples

被引:4
|
作者
Chen, Xiaowu [1 ]
Liu, Zhen [1 ,2 ]
Sheng, Hanmin [1 ]
Mi, Jinhua [1 ]
Tang, Xiaoting [1 ]
Li, Qi [1 ]
机构
[1] Univ Elect Sci & Technol China, Dept Instrument Sci & Technol, Chengdu 611731, Peoples R China
[2] Univ Elect Sci & Technol China, Shenzhen Inst Adv Study, Shenzhen 518110, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Lithium-ion battery; Remaining useful life prediction; A small number of historical samples; Data reconstruction; Monte Carlo method; MODEL; STATE;
D O I
10.1016/j.jpowsour.2023.233760
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium-ion battery (LIB) has been widely used in many energy storage systems, and the accurate remaining useful life (RUL) prediction of LIB is essential to ensure the safe operation of these systems. However, for the LIB installed in a new system, there are only few historical samples available for RUL prediction, which makes it difficult to build accurate RUL prediction model for LIB. Therefore, this paper proposes a data reconstruction-based Monte Carlo method to solve the problems caused by few historical samples. First, a Wiener process-based data reconstruction algorithm is used to reconstruct historical dataset, providing sufficient prior information for the Monte Carlo method. Then, Bayesian theory and a parameter update scheme are proposed to update the reconstructed dataset and the corresponding parameter distributions, so that the training data of RUL prediction model can be closer to the data of target LIB. Finally, long short-term memory neural network is applied for RUL prediction. The effectiveness of our model is verified by two real LIB datasets. Compared with some existing RUL prediction models of LIB, the proposed model has better generality and higher prediction accuracy under the condition of few historical samples.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] A Nonlinear Prediction Method of Lithium-Ion Battery Remaining Useful Life Considering Recovery Phenomenon
    Zhang, Zhenyu
    Peng, Zhen
    Guan, Yong
    Wu, Lifeng
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2020, 15 (09): : 8674 - 8693
  • [22] Prediction of remaining useful life for lithium-ion battery with multiple health indicators
    Su C.
    Chen H.
    Wen Z.
    Eksploatacja i Niezawodnosc, 2021, 23 (01) : 176 - 183
  • [23] Remaining Useful Life Prediction for Lithium-Ion Battery: A Deep Learning Approach
    Ren, Lei
    Zhao, Li
    Hong, Sheng
    Zhao, Shiqiang
    Wang, Hao
    Zhang, Lin
    IEEE ACCESS, 2018, 6 : 50587 - 50598
  • [24] Prediction of remaining useful life for lithium-ion battery with multiple health indicators
    Su, Chun
    Chen, Hongjing
    Wen, Zejun
    EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY, 2021, 23 (01): : 176 - 183
  • [25] A Lithium-Ion Battery Remaining Useful Life Prediction Method with A New Algorithm Based on Incremental Capacity Analysis
    Cervellieri, Alice
    JOURNAL OF ELECTRICAL SYSTEMS, 2024, 20 (04) : 2090 - 2099
  • [26] Lithium-ion battery remaining useful life prediction based on grey support vector machines
    Li, Xiaogang
    Miao, Jieqiong
    Ye, Jianhua
    ADVANCES IN MECHANICAL ENGINEERING, 2015, 7 (12)
  • [27] Remaining useful cycle life prediction of lithium-ion battery based on TS fuzzy model
    Hou, Enguang
    Wang, Zhixue
    Qiao, Xin
    Liu, Guangmin
    FRONTIERS IN ENERGY RESEARCH, 2022, 10
  • [28] Remaining useful life prediction of lithium-ion battery based on an improved particle filter algorithm
    Xie, Guo
    Peng, Xi
    Li, Xin
    Hei, Xinhong
    Hu, Shaolin
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2020, 98 (06): : 1365 - 1376
  • [29] Remaining Useful Life Prediction of Lithium-ion Battery based on Attention Mechanism with Positional Encoding
    Zhou, Beitong
    Cheng, Cheng
    Ma, Guijun
    Zhang, Yong
    2020 11TH INTERNATIONAL CONFERENCE ON MECHATRONICS AND MANUFACTURING (ICMM 2020), 2020, 895
  • [30] Remaining Useful Life Prediction of Aviation Lithium-ion Battery Based on SVR-MC
    Cui, Jianguo
    Zhao, Jie
    Cui, Xiao
    Liu, Dong
    Du, Wenyou
    Yu, Mingyue
    Jiang, Liying
    Wang, Jinglin
    2022 34TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2022, : 505 - 510