A data reconstruction-based Monte Carlo method for remaining useful life prediction of lithium-ion battery with few historical samples

被引:4
|
作者
Chen, Xiaowu [1 ]
Liu, Zhen [1 ,2 ]
Sheng, Hanmin [1 ]
Mi, Jinhua [1 ]
Tang, Xiaoting [1 ]
Li, Qi [1 ]
机构
[1] Univ Elect Sci & Technol China, Dept Instrument Sci & Technol, Chengdu 611731, Peoples R China
[2] Univ Elect Sci & Technol China, Shenzhen Inst Adv Study, Shenzhen 518110, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Lithium-ion battery; Remaining useful life prediction; A small number of historical samples; Data reconstruction; Monte Carlo method; MODEL; STATE;
D O I
10.1016/j.jpowsour.2023.233760
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium-ion battery (LIB) has been widely used in many energy storage systems, and the accurate remaining useful life (RUL) prediction of LIB is essential to ensure the safe operation of these systems. However, for the LIB installed in a new system, there are only few historical samples available for RUL prediction, which makes it difficult to build accurate RUL prediction model for LIB. Therefore, this paper proposes a data reconstruction-based Monte Carlo method to solve the problems caused by few historical samples. First, a Wiener process-based data reconstruction algorithm is used to reconstruct historical dataset, providing sufficient prior information for the Monte Carlo method. Then, Bayesian theory and a parameter update scheme are proposed to update the reconstructed dataset and the corresponding parameter distributions, so that the training data of RUL prediction model can be closer to the data of target LIB. Finally, long short-term memory neural network is applied for RUL prediction. The effectiveness of our model is verified by two real LIB datasets. Compared with some existing RUL prediction models of LIB, the proposed model has better generality and higher prediction accuracy under the condition of few historical samples.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] A lithium-ion battery remaining useful life prediction method based on the incremental capacity analysis and Gaussian process regression
    Pang, Xiaoqiong
    Liu, Xiaoyan
    Jia, Jianfang
    Wen, Jie
    Shi, Yuanhao
    Zeng, Jianchao
    Zhao, Zhen
    MICROELECTRONICS RELIABILITY, 2021, 127
  • [42] A lithium-ion battery remaining useful life prediction method based on unscented particle filter and optimal combination strategy
    Yang, Jinsong
    Fang, Weiguang
    Chen, Jiayu
    Yao, Boqing
    JOURNAL OF ENERGY STORAGE, 2022, 55
  • [43] A novel fusion prognostic approach for the prediction of the remaining useful life of a lithium-ion battery
    Mei, Xiaoyang
    Fang, Huajing
    2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 5801 - 5805
  • [44] Lithium-ion Battery Remaining Useful Life Prediction Under Grey Theory Framework
    Zhou, Zhenwei
    Huang, Yun
    Lu, Yudong
    Shi, Zhengyu
    Zhu, Liangbiao
    Wu, Jiliang
    Li, Hui
    PROCEEDINGS OF 2014 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-2014 HUNAN), 2014, : 297 - 300
  • [45] Similarity Based Remaining Useful Life Prediction for Lithium-ion Battery under Small Sample Situation Based on Data Augmentation
    Wang, Zongyao
    Wei, Shangguan
    Peng, Cong
    Cai, Baigen
    EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY, 2024, 26 (01):
  • [46] Remaining useful life prediction of lithium-ion battery using a novel health indicator
    Wang, Ranran
    Feng, Hailin
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2021, 37 (03) : 1232 - 1243
  • [47] Remaining useful life prediction of lithium-ion battery with unscented particle filter technique
    Miao, Qiang
    Xie, Lei
    Cui, Hengjuan
    Liang, Wei
    Pecht, Michael
    MICROELECTRONICS RELIABILITY, 2013, 53 (06) : 805 - 810
  • [48] A naive Bayes model for robust remaining useful life prediction of lithium-ion battery
    Ng, Selina S. Y.
    Xing, Yinjiao
    Tsui, Kwok L.
    APPLIED ENERGY, 2014, 118 : 114 - 123
  • [49] Prediction of the Remaining Life of Lithium-ion Battery Based on Discharge Process
    Feng N.
    Wang J.
    Yong J.
    Qiche Gongcheng/Automotive Engineering, 2021, 43 (12): : 1825 - 1831
  • [50] A Data-Driven Method for Lithium-Ion Batteries Remaining Useful Life Prediction Based on Optimal Hyperparameters
    Zhu, Yuhao
    Shang, Yunlong
    Duan, Bin
    Gu, Xin
    Li, Shipeng
    Chen, Guicheng
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 7388 - 7392