A Quadratic Serendipity Finite Volume Element Method on Arbitrary Convex Polygonal Meshes

被引:0
|
作者
Zhang, Yanlong [1 ,2 ]
机构
[1] China Acad Engn Phys, Grad Sch, Beijing 100088, Peoples R China
[2] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
基金
中国国家自然科学基金;
关键词
Quadratic serendipity polygonal finite volume element method; arbitrary convex polygonal meshes; Wachspress coordinate; unified dual partitions; optimal H1 error estimate; DIFFUSION-EQUATIONS; SCHEMES;
D O I
10.4208/cicp.OA-2022-0307
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Based on the idea of serendipity element, we construct and analyze the first quadratic serendipity finite volume element method for arbitrary convex polyg-onal meshes in this article. The explicit construction of quadratic serendipity element shape function is introduced from the linear generalized barycentric coordinates, and the quadratic serendipity element function space based on Wachspress coordi-nate is selected as the trial function space. Moreover, we construct a family of unified dual partitions for arbitrary convex polygonal meshes, which is crucial to finite vol-ume element scheme, and propose a quadratic serendipity polygonal finite volume element method with fewer degrees of freedom. Finally, under certain geometric assumption conditions, the optimal H1 error estimate for the quadratic serendipity polygonal finite volume element scheme is obtained, and verified by numerical ex-periments.
引用
收藏
页码:116 / 131
页数:16
相关论文
共 50 条
  • [41] An Arbitrary-Lagrangian-Eulerian hybrid finite volume/finite element method on moving unstructured meshes for the Navier-Stokes equations
    Busto, S.
    Dumbser, M.
    Rio-Martin, L.
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 437
  • [42] Extending linear finite elements to quadratic precision on arbitrary meshes
    Duque, Daniel
    Espanol, Pep
    Arturo de la Torre, Jaime
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 301 : 201 - 213
  • [43] Finite volume element method for nonlinear elliptic equations on quadrilateral meshes
    Chen, Guofang
    Lv, Junliang
    Zhang, Xinye
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 140 : 154 - 168
  • [44] Exact integration formulas for the finite volume element method on simplicial meshes
    Voitovich, T. V.
    Vandewalle, S.
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2007, 23 (05) : 1059 - 1082
  • [45] Quadratic finite volume element method for the air pollution model
    Wang, Ping
    Zhang, Zhiyue
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2010, 87 (13) : 2925 - 2944
  • [46] Quadratic finite volume element method for the improved Boussinesq equation
    Zhang, Zhiyue
    Lu, Fuqiang
    JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (01)
  • [47] New nonconforming finite elements on arbitrary convex quadrilateral meshes
    Zhou, Xinchen
    Meng, Zhaoliang
    Luo, Zhongxuan
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 296 : 798 - 814
  • [48] CONDITIONING OF FINITE ELEMENT EQUATIONS WITH ARBITRARY ANISOTROPIC MESHES
    Kamenski, Lennard
    Huang, Weizhang
    Xu, Hongguo
    MATHEMATICS OF COMPUTATION, 2014, 83 (289) : 2187 - 2211
  • [49] Uncollided flux techniques for arbitrary finite element meshes
    Hanus, Milan
    Harbour, Logan H.
    Ragusa, Jean C.
    Adams, Michael P.
    Adams, Marvin L.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 398
  • [50] A lowest-order weak Galerkin finite element method for Stokes flow on polygonal meshes
    Liu, Jiangguo
    Harper, Graham
    Malluwawadu, Nolisa
    Tavener, Simon
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 368