A Quadratic Serendipity Finite Volume Element Method on Arbitrary Convex Polygonal Meshes

被引:0
|
作者
Zhang, Yanlong [1 ,2 ]
机构
[1] China Acad Engn Phys, Grad Sch, Beijing 100088, Peoples R China
[2] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
基金
中国国家自然科学基金;
关键词
Quadratic serendipity polygonal finite volume element method; arbitrary convex polygonal meshes; Wachspress coordinate; unified dual partitions; optimal H1 error estimate; DIFFUSION-EQUATIONS; SCHEMES;
D O I
10.4208/cicp.OA-2022-0307
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Based on the idea of serendipity element, we construct and analyze the first quadratic serendipity finite volume element method for arbitrary convex polyg-onal meshes in this article. The explicit construction of quadratic serendipity element shape function is introduced from the linear generalized barycentric coordinates, and the quadratic serendipity element function space based on Wachspress coordi-nate is selected as the trial function space. Moreover, we construct a family of unified dual partitions for arbitrary convex polygonal meshes, which is crucial to finite vol-ume element scheme, and propose a quadratic serendipity polygonal finite volume element method with fewer degrees of freedom. Finally, under certain geometric assumption conditions, the optimal H1 error estimate for the quadratic serendipity polygonal finite volume element scheme is obtained, and verified by numerical ex-periments.
引用
收藏
页码:116 / 131
页数:16
相关论文
共 50 条
  • [21] A POINT ENRICHMENT STRATEGY FOR POLYGONAL FINITE VOLUME MESHES
    EVANS, A
    MARCHANT, MJ
    WEATHERILL, NP
    SZMELTER, J
    NATAKUSUMAH, DK
    APPLIED MATHEMATICAL MODELLING, 1992, 16 (11) : 562 - 575
  • [22] Recovered finite element methods on polygonal and polyhedral meshes
    Dong, Zhaonan
    Georgoulis, Emmanuil H.
    Pryer, Tristan
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2020, 54 (04): : 1309 - 1337
  • [23] SUPERCONVERGENCE OF A QUADRATIC FINITE ELEMENT METHOD ON ADAPTIVELY REFINED ANISOTROPIC MESHES
    Cao, Weiming
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2018, 15 (1-2) : 288 - 306
  • [24] Construction of Arbitrary Order Finite Element Degree-of-Freedom Maps on Polygonal and Polyhedral Cell Meshes
    Scroggs, Matthew W.
    Dokken, Jorgen S.
    Richardson, Chris N.
    Wells, Garth N.
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2022, 48 (02):
  • [25] The finite volume element method with quadratic basis functions
    Liebau, F
    COMPUTING, 1996, 57 (04) : 281 - 299
  • [26] THE GRADIENT RECOVERY FOR FINITE VOLUME ELEMENT METHOD ON QUADRILATERAL MESHES
    Song, Yingwei
    Zhang, Tie
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2016, 53 (06) : 1411 - 1429
  • [27] AN ADAPTIVE SURFACE FINITE ELEMENT METHOD BASED ON VOLUME MESHES
    Demlow, Alan
    Olshanskii, Maxim A.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (03) : 1624 - 1647
  • [28] A Nonlinear Finite Volume Element Method Satisfying Maximum Principle for Anisotropic Diffusion Problems on Arbitrary Triangular Meshes
    Gao, Yanni
    Wang, Shuai
    Yuan, Guangwei
    Hang, Xudeng
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2019, 26 (01) : 135 - 159
  • [29] A natural extension of the conventional finite volume method into polygonal unstructured meshes for CFD application
    Chow, P
    Cross, M
    Pericleous, K
    APPLIED MATHEMATICAL MODELLING, 1996, 20 (02) : 170 - 183
  • [30] A polygonal finite element method for modeling arbitrary interfaces in large deformation problems
    S. O. R. Biabanaki
    A. R. Khoei
    Computational Mechanics, 2012, 50 : 19 - 33