Exact integration formulas for the finite volume element method on simplicial meshes

被引:6
|
作者
Voitovich, T. V.
Vandewalle, S.
机构
[1] Katholieke Univ Leuven, Dept Comp Sci, B-3001 Louvain, Belgium
[2] Univ Freiburg, Inst Appl Math, D-79104 Freiburg, Germany
关键词
finite volume element method; barycentric coordinates; integration formulas;
D O I
10.1002/num.20210
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article considers the technological aspects of the finite volume element method for the numerical solution of partial differential equations on simplicial grids in two and three dimensions. We derive new classes of integration formulas for the exact integration of generic monomials of barycentric coordinates over different types of fundamental shapes corresponding to a barycentric dual mesh. These integration formulas constitute an essential component for the development of high-order accurate finite volume element schemes. Numerical examples are presented that illustrate the validity of the technology. (c) 2007 Wiley Periodicals, Inc.
引用
收藏
页码:1059 / 1082
页数:24
相关论文
共 50 条
  • [1] Barycentric Interpolation and Exact Integration Formulas for the Finite Volume Element Method
    Voitovich, Tatiana V.
    Vandewalle, Stefan
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, 2008, 1048 : 575 - +
  • [2] CONDITIONING OF THE FINITE VOLUME ELEMENT METHOD FOR DIFFUSION PROBLEMS WITH GENERAL SIMPLICIAL MESHES
    Wang, Xiang
    Huang, Weizhang
    Li, Yonghai
    MATHEMATICS OF COMPUTATION, 2019, 88 (320) : 2665 - 2696
  • [3] LINEAR FINITE ELEMENT SUPERCONVERGENCE ON SIMPLICIAL MESHES
    Chen, Jie
    Wang, Desheng
    Du, Qiang
    MATHEMATICS OF COMPUTATION, 2014, 83 (289) : 2161 - 2185
  • [4] A multilevel preconditioning for generalized finite element method problems on unstructured simplicial meshes
    Cho, D.
    Zikatanov, L.
    JOURNAL OF NUMERICAL MATHEMATICS, 2007, 15 (03) : 163 - 180
  • [5] THE GRADIENT RECOVERY FOR FINITE VOLUME ELEMENT METHOD ON QUADRILATERAL MESHES
    Song, Yingwei
    Zhang, Tie
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2016, 53 (06) : 1411 - 1429
  • [6] AN ADAPTIVE SURFACE FINITE ELEMENT METHOD BASED ON VOLUME MESHES
    Demlow, Alan
    Olshanskii, Maxim A.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (03) : 1624 - 1647
  • [7] Finite element integration for the control volume method
    Neises, J
    Steinbach, I
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 1996, 12 (09): : 543 - 555
  • [8] Local coarsening of simplicial finite element meshes generated by bisections
    Bartels, Soeren
    Schreier, Patrick
    BIT NUMERICAL MATHEMATICS, 2012, 52 (03) : 559 - 569
  • [9] Fracture and fragmentation of simplicial finite element meshes using graphs
    Mota, Alejandro
    Knap, Jaroslaw
    Ortiz, Michael
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2008, 73 (11) : 1547 - 1570
  • [10] Local coarsening of simplicial finite element meshes generated by bisections
    Sören Bartels
    Patrick Schreier
    BIT Numerical Mathematics, 2012, 52 : 559 - 569