Exact integration formulas for the finite volume element method on simplicial meshes

被引:6
|
作者
Voitovich, T. V.
Vandewalle, S.
机构
[1] Katholieke Univ Leuven, Dept Comp Sci, B-3001 Louvain, Belgium
[2] Univ Freiburg, Inst Appl Math, D-79104 Freiburg, Germany
关键词
finite volume element method; barycentric coordinates; integration formulas;
D O I
10.1002/num.20210
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article considers the technological aspects of the finite volume element method for the numerical solution of partial differential equations on simplicial grids in two and three dimensions. We derive new classes of integration formulas for the exact integration of generic monomials of barycentric coordinates over different types of fundamental shapes corresponding to a barycentric dual mesh. These integration formulas constitute an essential component for the development of high-order accurate finite volume element schemes. Numerical examples are presented that illustrate the validity of the technology. (c) 2007 Wiley Periodicals, Inc.
引用
收藏
页码:1059 / 1082
页数:24
相关论文
共 50 条
  • [31] Anisotropic mesh adaptation for finite volume and finite element methods on triangular meshes
    Dolejší, Vít
    Computing and Visualization in Science, 1998, 1 (03): : 165 - 178
  • [32] An analysis of the isoparametric bilinear finite volume element method by applying the Simpson rule to quadrilateral meshes
    Mu, Shengying
    Zhou, Yanhui
    AIMS MATHEMATICS, 2023, 8 (10): : 22507 - 22537
  • [33] On exact integration within an isoparametric tetragonal finite element
    Walentynski, Ryszard A.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, 2007, 936 : 582 - 585
  • [34] The finite volume method in the context of the finite element method
    Wu, Cheng-Chieh
    Volker, Daniel
    Weisbrich, Sven
    Neitzel, Frank
    MATERIALS TODAY-PROCEEDINGS, 2022, 62 : 2679 - 2683
  • [35] A Bi–Hyperbolic Finite Volume Method on Quadrilateral Meshes
    H. J. Schroll
    F. Svensson
    Journal of Scientific Computing, 2006, 26 : 237 - 260
  • [36] Finite volume method for the solution of flow on distorted meshes
    McBride, D.
    Croft, N.
    Cross, M.
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2007, 17 (02) : 213 - 239
  • [37] A finite volume method for Stokes problems on quadrilateral meshes
    Zhang, Tie
    Li, Zheng
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 77 (04) : 1091 - 1106
  • [38] Mixed finite element method on polygonal and polyhedral meshes
    Kuznetsov, Y
    Repin, S
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, PROCEEDINGS, 2004, : 615 - 622
  • [39] Superconvergence of quadratic finite volume method on triangular meshes
    Wang, Xiang
    Li, Yonghai
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 348 : 181 - 199
  • [40] A simple method for automatic update of finite element meshes
    Chiandussi, G
    Bugeda, G
    Oñate, E
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 2000, 16 (01): : 1 - 19