Explaining Black Boxes With a SMILE: Statistical Model-Agnostic Interpretability With Local Explanations

被引:0
|
作者
Aslansefat, Koorosh [1 ]
Hashemian, Mojgan [2 ]
Walker, Martin [1 ]
Akram, Mohammed Naveed [3 ]
Sorokos, Ioannis [3 ]
Papadopoulos, Yiannis [4 ]
机构
[1] Univ Hull, Comp Sci, Kingston Upon Hull HU6 7RX, England
[2] Direct Line Grp Ltd, Leeds LS1 4AZ, England
[3] Fraunhofer Inst Expt Software Engn, D-67663 Kaiserslautern, Germany
[4] Univ Hull, Dependable Intelligent Syst Res Grp, Kingston Upon Hull HU6 7RX, England
关键词
Closed Box; Perturbation Methods; Predictive Models; Gaussian Distribution; Data Models; Machine Learning; Training; Object Object; Use Of Measures; Statistical Measures; Wide Range Of Domains; Growth In Recent Years; Statistical Distance; Variety Of Supports; Linear Model Object Object; Alternative Models Object Object; Model Coefficients; Maximum Distance; Intersection Over Union Object Object Object Object Object Object; Kernel Function; Input Samples; Light Signal Object Object; Part Of The Image; Adversarial Attacks; Random Perturbations; Perturbation Vector; Human Intuition; Game Theory Object Object; Understanding Of Models;
D O I
10.1109/MS.2023.3321282
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Explainability is a key aspect of improving trustworthiness. We therefore propose SMILE, a new method that builds on previous approaches by making use of statistical distance measures to improve explainability while remaining applicable to a wide range of input data domains.
引用
收藏
页码:87 / 97
页数:11
相关论文
共 50 条
  • [1] Explainability of Point Cloud Neural Networks Using SMILE: Statistical Model-Agnostic Interpretability with Local Explanations
    Ahmadi, Seyed Mohammad
    Aslansefat, Koorosh
    Valcarce-Diñeiro, Rubén
    Barnfather, Joshua
    arXiv,
  • [2] LIVE: A Local Interpretable model-agnostic Visualizations and Explanations
    Shi, Peichang
    Gangopadhyay, Aryya
    Yu, Ping
    2022 IEEE 10TH INTERNATIONAL CONFERENCE ON HEALTHCARE INFORMATICS (ICHI 2022), 2022, : 245 - 254
  • [3] Model-Agnostic Interpretability with Shapley Values
    Messalas, Andreas
    Kanellopoulos, Yiannis
    Makris, Christos
    2019 10TH INTERNATIONAL CONFERENCE ON INFORMATION, INTELLIGENCE, SYSTEMS AND APPLICATIONS (IISA), 2019, : 220 - 226
  • [4] Deterministic Local Interpretable Model-Agnostic Explanations for Stable Explainability
    Zafar, Muhammad Rehman
    Khan, Naimul
    MACHINE LEARNING AND KNOWLEDGE EXTRACTION, 2021, 3 (03): : 525 - 541
  • [5] Causality-Aware Local Interpretable Model-Agnostic Explanations
    Cinquin, Martina
    Guidotti, Riccardo
    EXPLAINABLE ARTIFICIAL INTELLIGENCE, PT III, XAI 2024, 2024, 2155 : 108 - 124
  • [6] Local Interpretable Model-Agnostic Explanations for Classification of Lymph Node Metastases
    de Sousa, Iam Palatnik
    Bernardes Rebuzzi Vellasco, Marley Maria
    da Silva, Eduardo Costa
    SENSORS, 2019, 19 (13)
  • [7] Stable local interpretable model-agnostic explanations based on a variational autoencoder
    Xiang, Xu
    Yu, Hong
    Wang, Ye
    Wang, Guoyin
    APPLIED INTELLIGENCE, 2023, 53 (23) : 28226 - 28240
  • [8] Stable local interpretable model-agnostic explanations based on a variational autoencoder
    Xu Xiang
    Hong Yu
    Ye Wang
    Guoyin Wang
    Applied Intelligence, 2023, 53 : 28226 - 28240
  • [9] Interpretable heartbeat classification using local model-agnostic explanations on ECGs
    Neves, Ines
    Folgado, Duarte
    Santos, Sara
    Barandas, Marilia
    Campagner, Andrea
    Ronzio, Luca
    Cabitza, Federico
    Gamboa, Hugo
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 133
  • [10] Model-agnostic explanations for survival prediction models
    Suresh, Krithika
    Gorg, Carsten
    Ghosh, Debashis
    STATISTICS IN MEDICINE, 2024, 43 (11) : 2161 - 2182