From combinatorial maps to correlation functions in loop models

被引:5
|
作者
Grans-Samuelsson, Linnea [1 ,5 ]
Jacobsen, Jesper Lykke [1 ,2 ,3 ]
Nivesvivat, Rongvoram [1 ,6 ]
Ribault, Sylvain [1 ]
Saleur, Hubert [1 ,4 ]
机构
[1] Univ Paris Saclay, Inst Phys Theor, CEA, CNRS, Gif Sur Yvette, France
[2] Univ Paris, Univ PSL, Sorbonne Univ, Lab Phys,Ecole Normale Super,ENS,CNRS, Paris, France
[3] Sorbonne Univ, Ecole Normale Super, CNRS, Lab Phys LPENS, Paris, France
[4] Univ Southern Calif, Dept Phys & Astron, Los Angeles, CA USA
[5] Microsoft Stn Q, Santa Barbara, CA 93106 USA
[6] Tsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
来源
SCIPOST PHYSICS | 2023年 / 15卷 / 04期
基金
欧洲研究理事会;
关键词
POLYMER NETWORKS; EXPONENTS; SYMMETRY;
D O I
10.21468/SciPostPhys.15.4.147
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In two-dimensional statistical physics, correlation functions of the O(N) and Potts models may be written as sums over configurations of non-intersecting loops. We define sums associated to a large class of combinatorial maps (also known as ribbon graphs). We allow disconnected maps, but not maps that include monogons. Given a map with n vertices, we obtain a function of the moduli of the corresponding punctured Riemann surface. Due to the map's combinatorial (rather than topological) nature, that function is single-valued, and we call it an n-point correlation function. We conjecture that in the critical limit, such functions form a basis of solutions of certain conformal bootstrap equations. They include all correlation functions of the O(N) and Potts models, and correlation functions that do not belong to any known model. We test the conjecture by counting solutions of crossing symmetry for four-point functions on the sphere.
引用
收藏
页数:40
相关论文
共 50 条
  • [41] Lattes maps and combinatorial expansion
    Yin, Qian
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2016, 36 : 1307 - 1342
  • [42] Combinatorial rigidity of unicritical maps
    PENG WenJuan 1
    2 Departement de Mathematiques
    ScienceChina(Mathematics), 2010, 53 (03) : 831 - 848
  • [43] Irregular pyramids with combinatorial maps
    Brun, L
    Kropatsch, W
    ADVANCES IN PATTERN RECOGNITION, 2000, 1876 : 256 - 265
  • [44] Combinatorial Properties of Newton Maps
    Lodge, Russell
    Mikulich, Yauhen
    Schleicher, Dierk
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2021, 70 (05) : 1833 - 1867
  • [45] Homotopic transformations of combinatorial maps
    Marchadier, J
    Kropatsch, WG
    Hanbury, A
    DISCRETE GEOMETRY FOR COMPUTER IMAGERY, PROCEEDINGS, 2003, 2886 : 134 - 143
  • [46] COMBINATORIAL PATTERNS FOR MAPS OF THE INTERVAL
    MISIUREWICZ, M
    NITECKI, Z
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 94 (456) : R1 - &
  • [47] Contraction kernels and combinatorial maps
    Brun, L
    Kropatsch, W
    PATTERN RECOGNITION LETTERS, 2003, 24 (08) : 1051 - 1057
  • [48] Joint Tree of Combinatorial Maps
    Wang, Tao
    Lang, Congyan
    Feng, Songhe
    TRENDS AND APPLICATIONS IN KNOWLEDGE DISCOVERY AND DATA MINING, 2014, 8643 : 22 - 28
  • [49] WEAK MAPS OF COMBINATORIAL GEOMETRIES
    LUCAS, D
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 206 (MAY) : 247 - 279
  • [50] CORRELATION-FUNCTIONS AND CORRELATION TIMES FOR MODELS WITH MULTIPLICATIVE WHITE NOISE
    JUNG, P
    RISKEN, H
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1985, 59 (04): : 469 - 481