From combinatorial maps to correlation functions in loop models

被引:5
|
作者
Grans-Samuelsson, Linnea [1 ,5 ]
Jacobsen, Jesper Lykke [1 ,2 ,3 ]
Nivesvivat, Rongvoram [1 ,6 ]
Ribault, Sylvain [1 ]
Saleur, Hubert [1 ,4 ]
机构
[1] Univ Paris Saclay, Inst Phys Theor, CEA, CNRS, Gif Sur Yvette, France
[2] Univ Paris, Univ PSL, Sorbonne Univ, Lab Phys,Ecole Normale Super,ENS,CNRS, Paris, France
[3] Sorbonne Univ, Ecole Normale Super, CNRS, Lab Phys LPENS, Paris, France
[4] Univ Southern Calif, Dept Phys & Astron, Los Angeles, CA USA
[5] Microsoft Stn Q, Santa Barbara, CA 93106 USA
[6] Tsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
来源
SCIPOST PHYSICS | 2023年 / 15卷 / 04期
基金
欧洲研究理事会;
关键词
POLYMER NETWORKS; EXPONENTS; SYMMETRY;
D O I
10.21468/SciPostPhys.15.4.147
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In two-dimensional statistical physics, correlation functions of the O(N) and Potts models may be written as sums over configurations of non-intersecting loops. We define sums associated to a large class of combinatorial maps (also known as ribbon graphs). We allow disconnected maps, but not maps that include monogons. Given a map with n vertices, we obtain a function of the moduli of the corresponding punctured Riemann surface. Due to the map's combinatorial (rather than topological) nature, that function is single-valued, and we call it an n-point correlation function. We conjecture that in the critical limit, such functions form a basis of solutions of certain conformal bootstrap equations. They include all correlation functions of the O(N) and Potts models, and correlation functions that do not belong to any known model. We test the conjecture by counting solutions of crossing symmetry for four-point functions on the sphere.
引用
收藏
页数:40
相关论文
共 50 条
  • [31] On some algebraic and combinatorial properties of correlation-immune Boolean functions
    Alekseev, E. K.
    DISCRETE MATHEMATICS AND APPLICATIONS, 2010, 20 (04): : 421 - 439
  • [32] Combinatorial Aspects of Correlation Functions of the XXZ Heisenberg Chain in Limiting Cases
    Bogoliubov N.M.
    Malyshev C.
    Journal of Mathematical Sciences, 2016, 216 (1) : 8 - 22
  • [33] Shape of high order correlation functions in CMB anisotropy maps
    Brunier, T
    Bernardeau, F
    PHYSICAL REVIEW D, 2006, 73 (08)
  • [34] GLUEBALL MASSES AND STRING TENSION - SMEARED LOOP-LOOP CORRELATION-FUNCTIONS
    FERNANDEZ, LA
    MARINARI, E
    NUCLEAR PHYSICS B, 1988, 295 (01) : 51 - 64
  • [35] Combinatorial Yang–Baxter maps arising from the tetrahedron equation
    A. Kuniba
    Theoretical and Mathematical Physics, 2016, 189 : 1472 - 1485
  • [36] Angular correlation functions for models with logarithmic oscillations
    Jackson, Mark G.
    Wandelt, Ben
    Bouchet, Franois
    PHYSICAL REVIEW D, 2014, 89 (02):
  • [37] CORRELATION-FUNCTIONS FOR MINIMAL MODELS ON THE TORUS
    JAYARAMAN, T
    NARAIN, KS
    NUCLEAR PHYSICS B, 1990, 331 (03) : 629 - 658
  • [38] Boundary correlation functions of integrable vertex models
    Motegi, Kohei
    7TH INTERNATIONAL CONFERENCE ON QUANTUM THEORY AND SYMMETRIES (QTS7), 2012, 343
  • [39] Combinatorial rigidity of unicritical maps
    Peng WenJuan
    Tan Lei
    SCIENCE CHINA-MATHEMATICS, 2010, 53 (03) : 831 - 848
  • [40] Combinatorial rigidity of unicritical maps
    WenJuan Peng
    Lei Tan
    Science China Mathematics, 2010, 53 : 831 - 848